Skip to main content

Biosynthesis and Molecular Genetics of Peptaibiotics—Fungal Peptides Containing Alpha, Alpha-Dialkyl Amino Acids

  • Chapter
  • First Online:
  • 1984 Accesses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Peptaibiotics are peptide secondary metabolites rich in alpha, alpha-dialkyl amino acids from filamentous fungi, especially the members of the genus Trichoderma (anamorph of Hypocrea). In contrast to the rapid progress in our understanding of peptaibiotics conformation, structural properties and mode of action with lipid membranes, knowledge available on the molecular genetics involved in the biosynthesis of peptaibiotics is limited, particularly the regulation of biosynthesis. Similar to other nonribosomal peptides, microheterogeneous peptaibiotics are synthesized by nonribosomal peptide synthetases (NRPSs) via the multiple-carrier thiotemplate mechanism. Biochemical and genetic evidence has yielded insight into the biosynthesis mechanism and led to a better understanding of the biosynthesis of peptaibiotics. However, still much needs to be learned about substrate selectivity and the regulation of peptaibiotics biosynthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krause C, Kirschbaum J, Bruckner H (2006) Peptaibiomics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC-ES-MS. Amino Acids 30:435–443

    Article  CAS  PubMed  Google Scholar 

  2. Degenkolb T, Kirschbaum J, Bruckner H (2007) New sequences, constituents, and producers of peptaibiotics: an updated review. Chem Biodivers 4:1052–1067

    Article  CAS  PubMed  Google Scholar 

  3. Kredics L, Szekeres A, Czifra D, Vagvoelgyi C, Leitgeb B (2013) Recent results in alamethicin research. Chem Biodivers 10:744–771

    Article  CAS  PubMed  Google Scholar 

  4. Shi M, Zhang T, Sun L, et al (2013) Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis 18:435–451

    Article  CAS  PubMed  Google Scholar 

  5. Whitmore L, Wallace BA (2004) The peptaibol database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32:D593–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kisakürek MV (Editor-in-Chief) (2007) Special issue: Peptaibiotics I. Chem Biodivers 4:1021–1412 (Wiley-VCH Verlag, Weinheim)

    Article  Google Scholar 

  7. Kisakürek MV (Editor-in-Chief) (2013) Special issue: Peptaibiotics II. Chem Biodivers 10:731–961 (Wiley-VCH Verlag, Weinheim)

    Article  Google Scholar 

  8. Altherr W, Linden A, Heimgartner H (2007) The ‛azirine/oxazolone method’ in peptaibol synthesis: preparation of a derivative of trichotoxin A-50 (G). Chem Biodivers 4:1144–1169

    Article  CAS  PubMed  Google Scholar 

  9. Blaser P, Altherr W, Linden A, Heimgartner H (2013) Attempts toward the synthesis of the Peptaibol antiamoebin by using the ‛azirine/oxazolone method’. Chem Biodivers 10:920–941

    Article  CAS  PubMed  Google Scholar 

  10. Anke H (2009) Peptaibiotics: fungal peptides containing alpha-dialkyl alpha-amino acids [Edited by Claudio Toniolo and Hans Brückner]. WILEY-VCH Verlag, Weinheim

    Google Scholar 

  11. Stoppacher N, Neumann NKN, Burgstaller L, Zeilinger S, Degenkolb T, Brueckner H, Schuhmacher R (2013) The comprehensive peptaibiotics database. Chem Biodivers 10:734–743

    Article  CAS  PubMed  Google Scholar 

  12. Whitmore L, Wallace BA (2004) Analysis of peptaibol sequence composition: implications for in vivo synthesis and channel formation. Eur Biophys J Biophys Lett 33:233–237

    Article  CAS  Google Scholar 

  13. Degenkolb T, Graefenhan T, Berg A, Nirenberg HI, Gams W, Brueckner H (2006) Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chem Biodivers 3:593–610

    Article  CAS  PubMed  Google Scholar 

  14. Degenkolb T, Bruckner H (2008) Peptaibiomics: towards a myriad of bioactive peptides containing C(alpha)-dialkylamino acids? Chem Biodivers 5:1817–1843

    Article  CAS  PubMed  Google Scholar 

  15. Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Doehren H (2007) Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? Microbiol-SGM 153:3417–3437

    Article  CAS  Google Scholar 

  16. Kubicek CP, Komon-Zelazowska M, Sandor E, Druzhinina IS (2007) Facts and challenges in the understanding of the biosynthesis of peptaibols by Trichoderma. Chem Biodivers 4:1068–1082

    Article  CAS  PubMed  Google Scholar 

  17. Degenkolb T, Berg A, Gams W, Schlegel B, Grafe U (2003) The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J Pept Sci 9:666–678

    Article  CAS  PubMed  Google Scholar 

  18. Brueckner H, Becker D, Gams W, Degenkolb T (2009) Aib and iva in the biosphere: neither rare nor necessarily extraterrestrial. Chem Biodivers 6:38–56

    Article  CAS  Google Scholar 

  19. Benedetti E, Bavoso A, Di Blasio B, Pavone V, Pedone C, Toniolo C, Bonora GM (1982) Peptaibol antibiotics: a study on the helical structure of the 2–9 sequence of emerimicins III and IV. Proc Natl Acad Sci U S A 79:7951–7954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bruckner H, Graf H, Bokel M (1984) Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 40:1189–1197

    Article  CAS  PubMed  Google Scholar 

  21. Pandey RC, Meng H, Cook JC Jr, Rinehart KL Jr (1977) Structure of antiamoebin I from high resolution field desorption and gas chromatographic mass spectrometry studies. J Am Chem Soc 99:5203–5205

    Article  CAS  PubMed  Google Scholar 

  22. Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-Residue Lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174

    Article  CAS  Google Scholar 

  23. Toniolo C, Crisma M, Formaggio F, Peggion C, Epand RF, Epand RM (2001) Lipopeptaibols, a novel family of membrane active, antimicrobial peptides. Cell Mol Life Sci 58:1179–1188

    Article  CAS  PubMed  Google Scholar 

  24. Jaworski A, Bruckner H (2000) New sequences and new fungal producers of peptaibol antibiotics antiamoebins. J Pept Sci 6:149–167

    Article  CAS  PubMed  Google Scholar 

  25. Rinehart Jr KL, Gaudioso LA, Moore ML, Pandey RC, Cook JC, Barber M, Sedgwick RD, Bordoli RS, Tyler AN, Green BN (1981) Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry. J Amer Chem Soc 103:6517–6520

    Article  CAS  Google Scholar 

  26. Augeven-Bour I, Goulard C, Rebuffat S, Prigent Y, Auvin C, Bodo B (1997) Harzianin HB I, an 11-residue peptaibol from Trichoderma harzianum: isolation, sequence, solution synthesis and membrane activity. J Chem Soc, Perkin Trans 1:1587–1594

    Article  Google Scholar 

  27. Ritzau M, Heinze S, Dornberger K, Berg A, Fleck W, Schlegel B, Hartl AM, Grafe U (1997) Ampullosporin, a new peptaibol-type antibiotic from Sepedonium ampullosporum HKI-0053 with neuroleptic activity in mice. J Antibiot (Tokyo) 50:722–728

    Article  CAS  Google Scholar 

  28. Hulsmann H, Heinze S, Ritzau M, Schlegel B, Grafe U (1998) Isolation and structure of peptaibolin, a new peptaibol from Sepedonium strains. J Antibiot 51:1055–1058

    Article  CAS  PubMed  Google Scholar 

  29. Tsantrizos YS, Pischos S, Sauriol F, Widden P (1996) Peptaibol metabolites of Tolypocladium geodes. Can J Chem 74:165–172

    Article  CAS  Google Scholar 

  30. Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR Jr, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorganic Med Chem Lett 20:3658–3663

    Article  CAS  Google Scholar 

  31. Closse A, Huguenin R (1974) Isolation and structural clarification of chlamydocin. Helvetica chimica acta 57:533–545

    Article  CAS  PubMed  Google Scholar 

  32. Degenkolb T, Gams W, Bruckner H (2008) Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects. Chem Biodivers 5:693–706

    Article  CAS  PubMed  Google Scholar 

  33. Andersson MA, Mikkola R, Raulio M, Kredics L, Maijala P, Salkinoja-Salonen MS (2009) Acrebol, a novel toxic peptaibol produced by an Acremonium exuviarum indoor isolate. J Appl Microbiol 106:909–923

    Article  CAS  PubMed  Google Scholar 

  34. Chikanishi T, Hasumi K, Harada T, Kawasaki N, Endo A (1997) Clonostachin, a novel peptaibol that inhibits platelet aggregation. J Antibiot 50:105–110

    Article  CAS  PubMed  Google Scholar 

  35. Degenkolb T, Dieckmann R, Nielsen KF, et al (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Progress 7:177–219

    Article  Google Scholar 

  36. Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

    Article  CAS  PubMed  Google Scholar 

  37. Bruckner H, Toniolo C (2013) Towards a myriad of peptaibiotics. Chem Biodivers 10:731–733

    Article  PubMed  Google Scholar 

  38. Krause C, Kirschbaum J, Bruckner H (2007) Peptaibiomics: microheterogeneity, dynamics, and sequences of trichobrachins, peptaibiotics from Trichoderma parceramosum Bissett (T. longibrachiatum Rifai). Chem Biodivers 4:1083–1102

    Article  CAS  PubMed  Google Scholar 

  39. Kalb D, Lackner G, Hoffmeister D (2013) Fungal peptide synthetases: an update on functions and specificity signatures. Fungal Biol Rev 27:43–50

    Article  Google Scholar 

  40. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  PubMed  Google Scholar 

  41. Evans BS, Robinson SJ, Kelleher NL (2011) Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet Biol 48:49–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Reusser F (1967) Biosynthesis of antibiotic U-22,324, a cyclic polypeptide. J Biol Chem 242:243–247

    CAS  PubMed  Google Scholar 

  43. Kleinkauf H, Rindfleisch H (1975) Non-ribosomal biosynthesis of the cyclic octadecapeptide alamethicin. Acta Microbiol Acad Sci Hung 22:411–418

    CAS  PubMed  Google Scholar 

  44. Rindfleisch H, Kleinkauf H (1976) Biosynthesis of alamethicin. FEBS Lett 62:276–280

    Article  CAS  PubMed  Google Scholar 

  45. Mohr H, Kleinkauf H (1978) Alamethicin biosynthesis: acetylation of the amino terminus and attachment of phenylalaninol. Biochim Biophys Acta 526:375–386

    Article  CAS  PubMed  Google Scholar 

  46. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

  47. Wei X, Yang F, Straney DC (2005) Multiple non-ribosomal peptide synthetase genes determine peptaibol synthesis in Trichoderma virens. Can J Microbiol 51:423–429

    Article  CAS  PubMed  Google Scholar 

  48. Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecul Plant Pathol 8:737–746

    Article  CAS  Google Scholar 

  49. Wilhite SE, Lumsden RD, Straney DC (2001) Peptide synthetase gene in Trichoderma virens. Appl Environ Microb 67:5055–5062

    Article  CAS  Google Scholar 

  50. Vizcaino JA, Cardoza RE, Dubost L, Bodo B, Gutierrez S, Monte E (2006) Detection of peptaibols and partial cloning of a putative peptaibol synthetase gene from T-harzianum CECT 2413. Folia Microbiologica 51:114–120

    Article  CAS  PubMed  Google Scholar 

  51. Vizcaino JA, Sanz L, Cardoza RE, Monte E, Gutierrez S (2005) Detection of putative peptide synthetase genes in Trichoderma species: application of this method to the cloning of a gene from T. harzianum CECT 2413. FEMS microbiol lett 244:139–148

    Article  CAS  PubMed  Google Scholar 

  52. Chutrakul C, Peberdy JF (2005) Isolation and characterisation of a partial peptide synthetase gene from Trichoderma asperellum. Fems Microbiol Lett 252:257–265

    Article  CAS  PubMed  Google Scholar 

  53. Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Degenkolb T, Aghcheh RK, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brueckner H, von Doehren H (2012) The production of multiple amall peptaibol families by single 14-module peptide synthetases in Trichoderma/Hypocrea. Chem Biodivers 9:499–535

    Article  CAS  PubMed  Google Scholar 

  55. Wenzel SC, Kunze B, Hofle G, Silakowski B, Scharfe M, Blocker H, Muller R (2005) Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Chem biochem 6:375–385

    CAS  Google Scholar 

  56. Wenzel SC, Meiser P, Binz TM, Mahmud T, Muller R (2006) Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angewandte Chemie 45:2296–2301

    Article  CAS  PubMed  Google Scholar 

  57. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  59. Xie BB, Qin QL, Shi M, et al (2014) Comparative genomics provide insights into evolution of Trichoderma nutrition style. Genome Biol Evol 6:379–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Martinez D, Berka RM, Henrissat B, et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnol 26:553–560

    Article  CAS  Google Scholar 

  61. Komon-Zelazowska M, Neuhof T, Dieckmann R, von Dohren H, Herrera-Estrella A, Kubicek CP, Druzhinina IS (2007) Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell 6:2332–2342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lautru S, Challis GL (2004) Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiol-SGM 150:1629–1636

    Article  CAS  Google Scholar 

  63. Manavalan B, Murugapiran SK, Lee G, Choi S (2010) Molecular modeling of the reductase domain to elucidate the reaction mechanism of reduction of peptidyl thioester into its corresponding alcohol in non-ribosomal peptide synthetases. BMC Structural Biol 10:1

    Article  Google Scholar 

  64. Gao X, Haynes SW, Ames BD, Wang P, Vien LP, Walsh CT, Tang Y (2012) Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem Biol 8:823–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Raap J, Erkelens K, Ogrel A, Skladnev DA, Bruckner H (2005) Fungal biosynthesis of non-ribosomal peptide antibiotics and alpha, alpha-dialkylated amino acid constituents. J Pept Sci 11:331–338

    Article  CAS  PubMed  Google Scholar 

  66. Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by Trichoderma spp. Can J Microbiol 33:619–625

    Article  CAS  PubMed  Google Scholar 

  67. Leclerc G, Rebuffat S, Goulard C, Bodo B (1998) Directed biosynthesis of peptaibol antibiotics in two Trichoderma strains I. Fermentation and isolation. J Antibiot 51:170–177

    Article  CAS  PubMed  Google Scholar 

  68. Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Roehrich CR, Vilcinskas A, Brueckner H, Degenkolb T (2013) The sequences of the eleven-residue peptaibiotics: Suzukacillins-B. Chem Biodivs 10:827–837

    Article  CAS  Google Scholar 

  70. Song XY, Shen QT, Xie ST, Chen XL, Sun CY, Zhang YZ (2006) Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. Fems Microbiol Lett 260:119–125

    Article  CAS  Google Scholar 

  71. Butchko RA, Brown DW, Busman M, Tudzynski B, Wiemann P (2012) Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol 49:602–612

    Article  CAS  PubMed  Google Scholar 

  72. Karimi-Aghcheh R, Bok JW, Phatale PA, et al (2013) Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 (Bethesda) 3:369–378

    Article  CAS  Google Scholar 

  73. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microb 11:21–32

    Article  CAS  Google Scholar 

  74. Duclohier H (2007) Peptaibiotics and peptaibols: an alternative to classical antibiotics? Chem Biodivers 4:1023–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hi-Tech Research and Development program of China (2011AA090704), National Natural Science Foundation of China (31270064, 31100039) and Program of Shandong for Taishan Scholars (2009TS079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Zhong Zhang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Song, XY., Xie, BB., Chen, XL., Zhang, YZ. (2015). Biosynthesis and Molecular Genetics of Peptaibiotics—Fungal Peptides Containing Alpha, Alpha-Dialkyl Amino Acids. In: Zeilinger, S., Martín, JF., García-Estrada, C. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2531-5_11

Download citation

Publish with us

Policies and ethics