Skip to main content

Neuroimaging in Psychiatry

  • Chapter
The Medical Basis of Psychiatry

Abstract

The tools of neuroimaging and neurophysiology have recently made significant advances. Each technique delivers unique insights into the medical basis of neuropsychiatric disease. For these tools to augment personalized medicine, multiple neuroimaging and neurophysiological techniques must further mature while incorporating genomic information. This chapter is provided to create a foundation for understanding the major methods of neuroimaging and neurophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardo JV, Lee JT, Kuskowski MA, Carlis JV, Sheik SA, McCarten JR, Fink H, McPherson S, Shah H, Rottunda S, Dysken MW. Fluorodeoxyglucose positron emission tomography of mild cognitive impairment with clinical follow-up at 3 years. Alzheimers Dement 2010;6:326–333.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Supek S, Aine CJ, eds., Magnetoencephalography: From Signals to Dynamic Cortical Networks (Series in Biomedical Engineering). New York: Springer, 2014.

    Google Scholar 

  3. Hagen MC, Franzen O, McGlone F, Essick G, Dancer C, Pardo JV. Tactile motion activates the human middle temporal/V5 (MT/V5) complex. Eur J Neurosci 2002;16:957–964.

    Article  PubMed  Google Scholar 

  4. Meinzer M, Obleser J, Flaisch T, Eulitz C, Rockstroh B. Recovery from aphasia as a function of language therapy in an early bilingual patient demonstrated by fMRI. Neuropsychologia 2007;45:1247–1256.

    Article  CAS  PubMed  Google Scholar 

  5. Pardo JV, Kuskowski MA, Lee JT, Dysken MW. A web-based database for evaluation of PET data in dementia. Neurobiol Aging 2004;25: S282–S283.

    Article  Google Scholar 

  6. Wilson TW, Leuthold AC, Lewis SM, Georgopoulos AP, Pardo PJ. The time and space of lexicality: A neuromagnetic view. Exp Brain Res 2005;162:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Simos PG, Papanicolaou AC, Breier JI, Wheless JW, Constantinou JEC, Gormley WB, Maggio, WW. Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg 1999;91:787–796.

    Article  CAS  PubMed  Google Scholar 

  8. Murakami S, Zhang TS, Hirose A, Okada YC. Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices. J Physiol 2002;544:237–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murakami S, Hirose A, Okada YC. Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by guinea-pig CA3 slices. J Physiol 2003;553:975–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okada Y, Lahteenmaki A, Xu CB. Comparison of MEG and EEG on the basis of somatic evoked responses elicited by stimulation of the snout in the juvenile swine. Clin Neurophysiol 1999;110:214–229.

    Article  CAS  PubMed  Google Scholar 

  11. Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003;23:3963–3971.

    CAS  PubMed  Google Scholar 

  12. Tarkiainen A, Liljestrom M, Seppa M, Salmelin R. The 3D topography of MEG source localization accuracy: Effects of conductor model and noise. Clin Neurophysiol 2003; 114:1977–1992.

    Article  CAS  PubMed  Google Scholar 

  13. Boling W, Olivier A, Fabinyi G. Historical contributions to the modern understanding of function in the central area 1. Neurosurgery 2002;50:1296–1309.

    PubMed  Google Scholar 

  14. Finger S. Origins of Neuroscience: A History of Explorations into Brain Function. New York: Oxford University Press, 1994.

    Google Scholar 

  15. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937;60:389–443.

    Article  Google Scholar 

  16. Penfield W, Jasper HH. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown; 1954.

    Google Scholar 

  17. Penfield W, Perot P. The brain’s record of auditory and visual experience: A final summary and discussion. Brain 1963;86:595–696.

    Google Scholar 

  18. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy, SH. Deep brain stimulation for treatment-resistant depression. Neuron 2005;45:651–660.

    Article  CAS  PubMed  Google Scholar 

  19. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci 2006;7:358–366.

    Article  CAS  PubMed  Google Scholar 

  20. Averbeck BB, Lee D. Coding and transmission of information by neural ensembles. Trends Neurosci 2004;27:225–230.

    Article  CAS  PubMed  Google Scholar 

  21. Halgren E. How can intracranial recordings assist MEG source localization? Neurol Clin Neurophysiol 2004;2004:86.

    CAS  PubMed  Google Scholar 

  22. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: Phase synchronization and large-scale integration. Nat Rev Neurosci 2001;2:229–239.

    Article  CAS  PubMed  Google Scholar 

  23. Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC. Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 2001;85:1322–1327.

    CAS  PubMed  Google Scholar 

  24. Wang CM, Ulbert I, Schomer DL, Marinkovic K, Halgren E. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus- response mapping, familiarity, and orienting. J Neurosci 2005;25:604–613.

    Article  PubMed  CAS  Google Scholar 

  25. Özgoren M, Basar E. Macroscopic electrical activity as a conceptual framework in cognitive neuroscience. Theory Biosci 2003;121:351–369.

    Article  Google Scholar 

  26. Berger HJ. Electroencephalogram in humans. Arch Psychiatr Nervenkr 1929;87:527–570.

    Article  Google Scholar 

  27. Karbowski K. Hans Berger (1873-1941). J Neurol 2002;249:1130–1131.

    Article  CAS  PubMed  Google Scholar 

  28. Sanders LD, Stevens C, Coch D, Neville HJ. Selective auditory attention in 3-to 5-year-old children: An event-related potential study. Neuropsychologia 2006;44:2126–2138.

    Article  PubMed  Google Scholar 

  29. Tucker DM, Luu P, Frishkoff G, Quiring J, Poulsen C. Frontolimbic response to negative feedback in clinical depression. J Abnorm Psychol 2003;112:667–678.

    Article  PubMed  Google Scholar 

  30. Caldwell JA, Hall KK, Erickson BS. EEG data collected from helicopter pilots in flight are sufficiently sensitive to detect increased fatigue from sleep deprivation. Int J Aviat Psychol 2002;1:19–32.

    Article  Google Scholar 

  31. Luck SJ. An Introduction to the Event-Related Potential Technique (Cognitive Neuroscience). Cambridge, MA: MIT Press, 2005.

    Google Scholar 

  32. Babiloni C, Brancucci A, Capotosto P, Romani GL, Arendt-Nielsen L, Chen AC, Rossini, PM. Slow cortical potential shifts preceding sensorimotor interactions. Brain Res Bull 2005;65:309–316.

    Google Scholar 

  33. Tenke CE, Kayser J. Reference-free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA). Clin Neurophysiol 2005;116:2826–2846.

    Article  PubMed  Google Scholar 

  34. Gevins A, Le J, Leong H, McEvoy LK, Smith ME. Deblurring. J Clin Neurophysiol 1999;16:204–213.

    Article  CAS  PubMed  Google Scholar 

  35. Cohen D. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 1968;161:784–786.

    Article  CAS  PubMed  Google Scholar 

  36. Cohen D. Boston and the history of biomagnetism. Neurol Clin Neurophysiol 2004:114.

    Google Scholar 

  37. Zimmerman JE, Theine P, Harding JT. Design and operation of stable rf-biased superconducting point-contact quantum devices, and a note on the properties of perfectly clean metal contacts. J Appl Phys 1970;41:1572–1580.

    Article  Google Scholar 

  38. Ahonen AI, Hämäläinen MS, Kajola MJ, Knuutila JE, Laine PP, Lounasmaa OV, Parkkonen LT, Simola JT, Tesche CD. 122-channel SQUID instrument for investigating the magnetic signals from the human brain. Phys Scr 1993;T49:198–205.

    Article  Google Scholar 

  39. Del Gratta C, Pizzella V, Tecchio F, Romani GL. Magnetoencephalography: A noninvasive brain imaging method with 1 ms time resolution. Rep Prog Phys 2001;64:1759–1814.

    Article  Google Scholar 

  40. Hämäläinen MS Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993;65:413–497.

    Article  Google Scholar 

  41. Platzek D, Nowak H, Giessler F, Rother J, Eiselt M. Active shielding to reduce low frequency disturbances in direct current near biomagnetic measurements. Rev Sci Instrum 1999;70:2465–2470.

    Article  CAS  Google Scholar 

  42. Okada YC, Lahteenmaki A, Xu CB. Experimental analysis of distortion of magnetoencephalography signals by the skull. Clin Neurophysiol 1999;110:230–238.

    Article  CAS  PubMed  Google Scholar 

  43. Hillebrand A, Barnes GR. A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 2002;16:638–650.

    Article  CAS  PubMed  Google Scholar 

  44. Helenius P, Salmelin R, Service E, Connolly JF. Semantic cortical activation in dyslexic readers. J Cogn Neurosci 1999;11:535–550.

    Article  CAS  PubMed  Google Scholar 

  45. Ahveninen J, Jaaskelainen IP, Osipova D, Huttunen MO, Ilmoniemi RJ , Kaprio, J, Lonnqvist J, Manninen M, Pakarinen S, Therman, S, Näätänen, R, Cannon TD. Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia. Biol Psychiatry 2006;60:612–620.

    Article  PubMed  Google Scholar 

  46. Reite M, Zimmerman JE, Edrich J, Zimmerman J. The human magnetoencephalogram: Some EEG and related correlations. Electroencephalogr Clin Neurophysiol 1976;40:59–66.

    Article  CAS  PubMed  Google Scholar 

  47. DeFelipe J, Onso-Nanclares L, Arellano JI. Microstructure of the neocortex: Comparative aspects. J Neurocytology 2002;31:299–316.

    Article  Google Scholar 

  48. Bernat EM, Williams WJ, Gehring WJ. Decomposing ERP time-frequency energy using PCA. Clin Neurophysiol 2005;116:1314–1334.

    Article  PubMed  Google Scholar 

  49. Pfürtscheller G. Event-related desynchronization mapping: Visualization of cortical activation patterns. In: Duffy FH (ed.) Topographic Mapping of Brain Electrical Activity. Boston: Butterworth, 1986:99–111.

    Chapter  Google Scholar 

  50. Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: Synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol 2005;93:2039–2052.

    Article  PubMed  Google Scholar 

  51. Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 1999;3:151–162.

    Article  PubMed  Google Scholar 

  52. Vidal JR, Chaumon M, O’Regan JK, Tallon-Baudry C. Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals. J Cogn Neurosci 2006;18:1850–1862.

    Article  PubMed  Google Scholar 

  53. Contreras D, Destexhe A, Sejnowski TJ, Steriade M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 1996;274:771–774.

    Article  CAS  PubMed  Google Scholar 

  54. Llinas RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol 2006;95:3297–3308.

    Article  PubMed  Google Scholar 

  55. Steriade M. The excitatory-inhibitory response sequence in thalamic and neocortical cells: State-related changes and regulatory systems In: Edelman GM, Gall WE, Cowan WM, eds. Dynamic Aspects of Neocortical Function 1984, New York: Wiley:107–157.

    Google Scholar 

  56. Potter D, Summerfelt A, Gold J, Buchanan RW. Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr Bull 2006;32:692–700.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heuserlink M, Dirlich G, Berg P, Vogl L, Scherg M. Eyeblinks evoke potentials in the occipital brain region. Neurosci Lett 1992;143:31–34.

    Article  CAS  Google Scholar 

  58. Hari R, Salmelin R, Tissari SO, Kajola M, Virsu V. Visual-stability during eyeblinks. Nature 1994;367:121–122.

    Article  CAS  PubMed  Google Scholar 

  59. Leuthold AC. Subtraction of heart artifact from MEG data: The matched filter revisited. Soc Neurosci Abstracts 2003:863.3.

    Google Scholar 

  60. Jousmaki V, Hari R. Cardiac artifacts in magnetoencephalogram. J Clin Neurophysiol 1996;13:172–176.

    Article  CAS  PubMed  Google Scholar 

  61. Wilson HS. Continuous head-localization and data correction in a whole-cortex MEG sensor. Neurol Clin Neurophysiol 2004;30:56.

    Google Scholar 

  62. Uutela K, Taulu S, Hämäläinen M. Detecting and correcting for head movements in neuromagnetic measurements. NeuroImage 2001;14:1424–1431.

    Article  CAS  PubMed  Google Scholar 

  63. Langheim FJP, Leuthold AC, Georgopoulos AP. Synchronous dynamic brain networks revealed by magnetoencephalography. Proc Natl Acad Sci USA 2006;103:455–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pfürtscheller G, da Silva FHL. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol 1999;110:1842–1857.

    Article  PubMed  Google Scholar 

  65. Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M. Magnetoencephalographic cortical rhythms. Int J Psychophysiol 1997;26:51–62.

    Article  CAS  PubMed  Google Scholar 

  66. Halgren E, Baudena P, Heit G, Clarke M, Marinkovic K. Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and rolandic cortices. J Physiol Paris 1994;88:1–50.

    Article  CAS  PubMed  Google Scholar 

  67. Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O. Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol 1995;95:189–200.

    Article  CAS  PubMed  Google Scholar 

  68. Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A , Singh KD, Holliday IE, Francis ST, Morris PG. GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. NeuroImage 2005;26:302–306.

    Article  PubMed  Google Scholar 

  69. Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR. A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 2005;25:199–211.

    Article  PubMed  Google Scholar 

  70. Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MIG, Francis ST, Morris PG. Beamformer reconstruction of correlated sources using a modified source model. NeuroImage 2007;34:1454–1465.

    Article  PubMed  Google Scholar 

  71. Wang JZ, Williamson SJ, Kaufman L. Magnetic source images determined by a lead-field analysis – the unique minimum-norm least-squares estimation. IEEE Trans Biomed Eng 1992;39:665–675.

    Article  CAS  PubMed  Google Scholar 

  72. Uutela K, Hlliamson SJ, Kaufman L. Visualization of magnetoencephalographic data using minimum current estimates 1999;10:173–180.

    Google Scholar 

  73. Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS. Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 2006;31:160–171.

    Article  PubMed  Google Scholar 

  74. Lauronen L, Nevalainen P, Wikstrom H, Parkkonen L, Okada Y, Pihko E. Immaturity of somatosensory cortical processing in human newborns. NeuroImage 2006;33:195–203.

    Article  PubMed  Google Scholar 

  75. Berger A, Tzur G, Posner MI. Infant brains detect arithmetic errors. Proc Natl Acad Sci USA 2006;103:12649–12653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rojas DC, Benkers TL, Rogers SJ, Teale PD, Reite ML, Hagerman RJ. Auditory evoked magnetic fields in adults with fragile X syndrome. Neuroreport 2001;12:2573–2576.

    Article  CAS  PubMed  Google Scholar 

  77. Hogan AM, Vargha-Khadem F, Kirkham FJ, Baldeweg T. Maturation of action monitoring from adolescence to adulthood: An ERP study. Dev Sci 2005;8:525–534.

    Article  PubMed  Google Scholar 

  78. Aine CJ, Woodruff CC, Knoefel JE, Adair JC, Hudson D, Qualls C, Bockholt J, Best E, Kovacevic S, Cobb W, Padilla D, Hart B, Stephen JM. Aging: Compensation or maturation? NeuroImage 2006;32:1891–1904.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Forss N, Raij TT, Seppa M, Hari R. Common cortical network for first and second pain. NeuroImage 2005;24:132–142.

    Article  PubMed  Google Scholar 

  80. Allison T, Puce A, Spencer DD, McCarthy G. Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex 1999;9:415–430.

    Article  CAS  PubMed  Google Scholar 

  81. Ford JM, White P, Lim KO, Pfefferbaum A. Schizophrenics have fewer and smaller P300s: A single-trial analysis. Biol Psychiatry 1994;35:96–103.

    Article  CAS  PubMed  Google Scholar 

  82. Mitchell PF, Andrews S, Fox AM, Catts SV, Ward PB, McConaghy N. Active and passive attention in schizophrenia: An ERP study of information processing in a linguistic task. Biol Psychol 1991;32:101–124.

    Article  CAS  PubMed  Google Scholar 

  83. Kutas M, Hillyard SA. Reading senseless sentences: Brain potentials reflect semantic incongruity. Science 1980;207:203–205.

    Article  CAS  PubMed  Google Scholar 

  84. Reite M, Teale P, Rojas DC, Benkers TL, Carlson J. Anomalous somatosensory cortical localization in schizophrenia. Am J Psychiatry 2003;160:2148–2153.

    Article  PubMed  Google Scholar 

  85. Oribe N, Onitsuka T, Hirano S, Hirano Y, Maekawa T, Obayashi C, Ueno T, Kasai K, Kanba S. Differentiation between bipolar disorder and schizophrenia revealed by neural oscillation to speech sounds: An MEG study. Bipolar Disord 2010;12:804–812.

    Article  PubMed  Google Scholar 

  86. Meletti S, Tassi L, Mai R, Fini N, Tassinari CA, Lo Russo G. Emotions induced by intracerebral electrical stimulation of the temporal lobe. Epilepsia 2006;47:47–51.

    Article  PubMed  Google Scholar 

  87. Parker SW, Nelson CA. The impact of early institutional rearing on the ability to discriminate facial expressions of emotion: An event-related potential study. Child Dev 2005;76:54–72.

    Article  PubMed  Google Scholar 

  88. Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmidt AM, Dale AM, Hämäläinen MS, Marinkovic K, Schacter DL, Rosen BR, Halgren E. Top-down facilitation of visual recognition. Proc Natl Acad Sci USA 2006;103:449–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nofzinger EA, Nichols TE, Meltzer CC, Price J, Steppe DA, Miewald JM, Kupfer DJ, Moore RY. Changes in forebrain function from waking to REM sleep in depression: Preliminary analyses of [F-18]FDG PET studies. Psychiatry Res Neuroimaging 1999;91:59–78.

    Article  CAS  PubMed  Google Scholar 

  90. Wang JJ, Zhou TG, Qiu ML, Du AT, Cai K, Wang ZL, Zhou C, Meng M, Zhuo Y, Fan SL, Chen L. Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI + ERP study. Hum Brain Mapp 1999;8:170–181.

    Article  CAS  PubMed  Google Scholar 

  91. Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A. Where the BOLD signal goes when alpha EEG leaves. NeuroImage 2006;31:1408–1418.

    Article  CAS  PubMed  Google Scholar 

  92. Fallgatter AJ, Herrmann MJ, Roemmler J, Ehlis AC, Wagener A, Heidrich A, Ortega G, Zeng Y, Lesch KP. Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacol 2004;29:1506–1511.

    Article  CAS  Google Scholar 

  93. Johnson JP, Muhleman D, MacMurray J, Gade R, Verde R, Ask M, Kelley J, Comings DE. Association between the cannabinoid receptor gene (CNR1) and the P300 event-related potential. Mol Psychiatry 1997;2:169–171.

    Article  CAS  PubMed  Google Scholar 

  94. Cañive JC, Lu BL, Smith AK, Edgar JC, Jones AP, Albers C, Lewis SF, Huang MX, Escamilla M, Miller GA. Temporal and hemisphere specificity of COMT polymorphism and paired-click gating. Am J Med Genet Part B-Neuropsychiatric Genet 2006;141B:775.

    Google Scholar 

  95. Pauling, L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci 1936;22:210–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bloch F. Nuclear induction. Physi Rev 1946;70:460–474.

    Article  CAS  Google Scholar 

  97. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946;69:37–38.

    Article  CAS  Google Scholar 

  98. Lauterbur PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 1973;242:190–191.

    Article  CAS  Google Scholar 

  99. Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C 1977;10:L55-L58.

    Article  CAS  Google Scholar 

  100. Grant GM, Harris, RK. Encyclopedia of Nuclear Magnetic Resonance, Volume 1, Historical Perspectives. Chichester, England: John Wiley and Sons, 1996.

    Google Scholar 

  101. Ogawa S, Lee TM, Kay AR, Tank, DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990;87:9868–9872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR. Functional mapping of the human visual cortex by magnetic resonance imaging. Science;1991;254:716–719.

    Article  CAS  PubMed  Google Scholar 

  103. Blamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellermann JM, Hyder F, Rattner Z, Shulman RG. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89:11069–11073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kwong KK, Belliveau JW, Chesler DA , Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992;89:5675–5679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil, K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993;64:803–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC. Mapping human visual cortex with positron emission tomography. Nature 1986;323:806–809.

    Article  CAS  PubMed  Google Scholar 

  107. Jasdzewski G, Strangman G, Wagner J, Kwong KK, Poldrack RA, Boas DA. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy. NeuroImage 2003;20:479–488.

    Article  CAS  PubMed  Google Scholar 

  108. Lu Y, Grova C, Kobayashi E, Dubeau F, Gotman J. Using voxel-specific hemodynamic response function in EEG-fMRI data analysis: An estimation and detection model. NeuroImage 2007;34:195–203.

    Article  PubMed  Google Scholar 

  109. de Zwart JA, Silva AC, van Geldere, P, Kellman P, Fukunaga M, Chu RX, Koretsky AP, Frank JA, Duyn JH. Temporal dynamics of the BOLD fMRI impulse response. NeuroImage 2005;54:667–677.

    Article  Google Scholar 

  110. Buxton RB, Uludag K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. NeuroImage 2004;23:S220–S223.

    Article  PubMed  Google Scholar 

  111. Lennie P, The cost of cortical computation. Curr Biol 2003;13:493–497.

    Article  CAS  PubMed  Google Scholar 

  112. Akgoren N, Dalgaard P, Lauritzen M. Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: Relation to excitatory synaptic activity and nitric oxide synthesis. Brain Res 1996;710:204–214.

    Article  CAS  PubMed  Google Scholar 

  113. Caesar K, Akgoren N, Mathiesen C, Lauritzen M. Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats. J Physiology 1999;520:281–292.

    Article  CAS  Google Scholar 

  114. Attwell D, Gibb A .Neuroenergetics and the kinetic design of excitatory synapses. Nat Neurosci Rev 2005;6:841–849.

    Article  CAS  Google Scholar 

  115. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E Cortical GABA interneurons in neurovascular coupling: Relays for subcortical vasoactive pathways. J Neurosci 2004;24:8940–8949.

    Article  CAS  PubMed  Google Scholar 

  116. Mandeville JB, Marota JJA, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, Weisskoff RM. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 1998;39:615–624.

    Article  CAS  PubMed  Google Scholar 

  117. Bonhoeffer T, Grinvald A. The layout of iso-orientation domains in area 18 of cat visual cortex: Optical imaging reveals a pinwheel-like organization. J Neurosci 1993;13:4157–4180.

    CAS  PubMed  Google Scholar 

  118. Cheng K, Wagooner RA, Tanaka K. Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 2001;32:359–374.

    Article  CAS  PubMed  Google Scholar 

  119. Duong TQ, Kim DS, Ugurbil K, Kim SG. Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 2001;95:11489–11492.

    Google Scholar 

  120. Harrison RV, Harel N, Panesar J, Mount RJ Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb Cortex 2002;12:225–233.

    Article  PubMed  Google Scholar 

  121. Disbrow EA, Slutsky DA, Roberts TPL, Krubitzer LA. Functional MRI at 1.5 Tesla: A comparison of the blood oxygenation level-dependent signal and electrophysiology. Proc Natl Acad Sci USA 2000;97:9718–9723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull 1981;7:519–579.

    Article  CAS  PubMed  Google Scholar 

  123. Olman CA, Inati S, Heeger DJ. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. NeuroImage 2007;34:1126–1135.

    Article  PubMed  Google Scholar 

  124. Turner R. How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. NeuroImage 2002;16:1062–1067.

    Article  PubMed  Google Scholar 

  125. Thulborn KR, Waterton JC, Matthews PM, Radda GK Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta - Gen Subjects 1982;714:265–270.

    Article  CAS  Google Scholar 

  126. Yacoub E, Duong TQ, Van de Moortele PF, Lindquist M, Adriany G, Kim SG, Ugurbil K, Hu XP. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 2003;49:655–664.

    Article  PubMed  Google Scholar 

  127. Norris DG, Zysset S, Mildner T, Wiggins CJ. An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T. NeuroImage 2002;15:719–726.

    Article  PubMed  Google Scholar 

  128. Andersson J, Hutton C, Ashburner J, Turner R, Friston K. Modelling geometric deformations in EPI time series. NeuroImage 2001;13:903–919.

    Article  CAS  PubMed  Google Scholar 

  129. Constable RT. Functional MR imaging using gradient-echo echo-planar imaging in the presence of large static field inhomogeneities. J Magn Reson Imaging 1995;5:746–752.

    Article  CAS  PubMed  Google Scholar 

  130. Weisskoff RM, Zuo CS, Boxerman JL Rosen BR. Microscopic susceptibility variation and transverse relaxation: Theory and experiment. Mag Reson Med 1994;31:601–610.

    Article  CAS  Google Scholar 

  131. Buxton RB. Quantifying CBF with Arterial Spin Labeling. J Mag Res Imaging 2005;22:723–726.

    Article  Google Scholar 

  132. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23:37–45.

    Article  CAS  PubMed  Google Scholar 

  133. Edelman RR, Chen Q. EPISTAR MRI: Multislice mapping of cerebral blood flow. Magn Reson Med 1998;40:800–805.

    Article  CAS  PubMed  Google Scholar 

  134. Kim S-G, Tsekos N. Perfusion imaging by a Flow-sensitive Alternating Inversion Recovery (FAIR) technique: Application to functional brain imaging. Magn Reson Med 1997;37:425–435.

    Article  CAS  PubMed  Google Scholar 

  135. Luh W-M, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: A method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41:1246–1254.

    Article  CAS  PubMed  Google Scholar 

  136. Pruessmann, KP. Parallel imaging at high field strength: Synergies and joint potential. Top Magn Reson Imag 2004;15:237–244.

    Google Scholar 

  137. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603.

    Article  CAS  PubMed  Google Scholar 

  138. Kangarlu A, Bourekas EC, Ray-Chaudhury A, Rammohan KW. Cerebral cortical lesions in multiple sclerosis detected by MR imaging at 8 Tesla. Am J Neuroradiol 2007;28:262–266.

    CAS  PubMed  Google Scholar 

  139. Whitwell JL, Jack CR. Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imag 2005;16:409–425.

    Article  Google Scholar 

  140. Jack CR, Marjanska M, Wengenack TM, Reyes DA, Curran GL, Lin J, Preboske GM, Poduslo JF, Garwood M. Magnetic resonance imaging of Alzheimer's pathology in the brains of living transgenic mice: A new tool in Alzheimer's disease research. Neuroscientist 2007;13:38–48.

    Article  CAS  PubMed  Google Scholar 

  141. Eckert MA, Galaburda AM, Karchemskiy A, Liang A, Thompson P, Dutton RA, Lee AD, Bellugi U, Korenberg JR, Mills D, Rose FE, Reiss, AL. Anomalous sylvian fissure morphology in Williams syndrome. NeuroImage 2006;33:39–45.

    Article  PubMed  Google Scholar 

  142. Frodl T, Schaub A, Banac S, Charypar M, Jäger M, Kümmler P, Bottlender R, Zetzsche T, Born C, Leinsinger G, Reiser M, Möller HJ. Meisenzahl, EM. Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J Psychiatry Neurosci. 2006;31:316–325.

    PubMed  PubMed Central  Google Scholar 

  143. Vidal CN, Rapoport JL, Hayashi KM, Geaga JA, Sui YH, McLemore LE, Alaghband Y, Giedd JN Gochman P, Blumenthal J, Gogtay N, Nicolson R, Toga AW, Thompson PM. Dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch Gen Psychiatry 2007;63:25–34.

    Article  Google Scholar 

  144. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006;51:527–539.

    Article  CAS  PubMed  Google Scholar 

  145. Niogi SN, McCandliss BD. Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia 2006;44:2178–2188.

    Article  PubMed  Google Scholar 

  146. Ge Y, Law M, Grossman RI, Applications of diffusion tensor MR imaging in multiple sclerosis. Ann NY Acad Sci 2005;1064:202–219.

    Article  PubMed  Google Scholar 

  147. Lehericy S, Ducros M, Krainik A, Francois C, van de Moortele PF, Ugurbil, K, Kim DS. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to human striatum. Cereb Cortex 2004;14:1302–1309.

    Article  PubMed  Google Scholar 

  148. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME. Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 2000;21:1636–1644.

    CAS  PubMed  Google Scholar 

  149. Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain 2004;127:1811–1821.

    Article  PubMed  Google Scholar 

  150. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: Evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 2006;27:729–740.

    Google Scholar 

  151. Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR, Ugurbil, K, Garwood M. Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 2005;102:11906–11910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Oz G, Terpstra M, Tkac I, Aia P, Lowary J, Tuite PJ, Gruetter R. Proton MRS of the unilateral substantia nigra in the human brain at 4 Tesla: Detection of high GABA concentrations. Magn Reson Med 2006;55:296–301.

    Article  CAS  PubMed  Google Scholar 

  153. Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF. Neural primacy of the salience processing system in schizophrenia. Neuron 2013;79:814–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Oksanen PJ. Estimated individual annual cosmic radiation doses for flight crews. Aviat Space Environ Med 1998;69:621–625.

    CAS  PubMed  Google Scholar 

  155. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M. Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. Am J Psychiatry 1998;155:761–767.

    Article  CAS  PubMed  Google Scholar 

  156. Delforge J, Pappata S, Millet P, Samson Y, Bendriem B, Jobert A, Crouzel C, Syrota A. Quantification of benzodiazepine receptors in human brain using PET, [11C]flumazenil, and a single-experiment protocol. J Cereb Blood Flow Metab 1995;15:284–300.

    Article  CAS  PubMed  Google Scholar 

  157. Lassen NA, Bartenstein PA, Lammertsma AA, Prevett MC, Turton DR, Luthra SK, Osman S, Bloomfield PM, Jones T, Patsalos PN, O’Connell, MT Duncan JS, Andersen, JV. Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: Application of the steady-state principle. J Cereb Blood Flow Metab 1995;15:152–165.

    Article  CAS  PubMed  Google Scholar 

  158. Millet P, Graf C, Moulin M, Ibanez V. SPECT quantification of benzodiazepine receptor concentration using a dual-ligand approach. J Nucl Med 2006;47:783–792.

    PubMed  Google Scholar 

  159. Sweet WH. The use of nuclear disintegration in the diagnosis and treatment of brain tumor. N Engl J Med 1951;245:875–878.

    Article  CAS  PubMed  Google Scholar 

  160. Wrenn FR, Good ML, Handler P. The use of positron-emitting radioisotopes for the localization of brain tumors. Science 1951;113:525–527.

    Article  CAS  PubMed  Google Scholar 

  161. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 1975;16:210–224.

    CAS  PubMed  Google Scholar 

  162. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging. Radiology 1975;114:89–98.

    Article  CAS  PubMed  Google Scholar 

  163. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Colemant RE, Doraiswamy PM, Fleisher AS, Reiman EM, Sabbagh MN, Sadowsky CH, Schneider JA , Arora A, Carpenter AP, Flitter ML, Joshi, AD, Krautkramer M, Lu M, Mintun MA, Skovronsky DM. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: A prospective cohort study. Lancet Neurol 2012;11:669–678.

    Article  CAS  PubMed  Google Scholar 

  164. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch, P, Karlawish JH, Rowe CC, Carrillo MC, Hartley DM, Hedrick S, Pappas V, Thies, WH. Appropriate use criteria for amyloid PET: A report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement 2013;9:e106–e109.

    Google Scholar 

  165. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Gallagher B, Hoffman E, Alavi A, Sokoloff L. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl 1977;64:190–191.

    CAS  PubMed  Google Scholar 

  166. Sokoloff L, Reivich M, Kennedy C, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Gallagher B, Hoffman E, Alavi A, Sokoloff L. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.

    Article  CAS  PubMed  Google Scholar 

  167. Kety SS. A biologist examines the mind and behavior. Science 1960;132:1861–1867.

    Article  CAS  PubMed  Google Scholar 

  168. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J Clin Invest 1948;27:476–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Huang SC, Carson RE, Hoffman EJ, Carson J, Macdonald N, Barrio JR, Phelps ME. Quantitative measurement of local cerebral blood-flow in humans by positron computed-tomography and 15O-water. J Cereb Blood Flow Metab 1983;3:141–153.

    Article  CAS  PubMed  Google Scholar 

  170. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 1983;24:782–789.

    CAS  PubMed  Google Scholar 

  171. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983;24:790–798.

    CAS  PubMed  Google Scholar 

  172. Fox PT, Mintun MA, Raichle ME, Herscovitch P. A noninvasive approach to quantitative functional brain mapping with H2 15O and positron emission tomography. J Cereb Blood Flow Metab 1984;4:329–333.

    Article  CAS  PubMed  Google Scholar 

  173. Posner MI, Petersen SE, Fox PT, Raichle ME. Localization of cognitive operations in the human brain. Science 1988;240:1627–1631.

    Article  CAS  PubMed  Google Scholar 

  174. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA 2001;98:676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zald DH,Cowan RL,Riccardi P,Baldwin RM,Ansari MS,Li R,Shelby ES,Smith CE,McHugo M,Kessler RM. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neurosci 2008; 28:14372–14378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang D, Winz OH, Seidenbecher CI, Coenen HH, Heinze HJ, Zilles K, Düzel E, Bauer A. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci 2008;28:14311–14319.

    Article  CAS  PubMed  Google Scholar 

  177. Laruelle M Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 1998; 42:211–221.

    CAS  PubMed  Google Scholar 

  178. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000;157:514–520.

    Article  CAS  PubMed  Google Scholar 

  179. Nord M, Farde F. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther 2011;17:97–103.

    Article  PubMed  Google Scholar 

  180. Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 2009;15:2550–2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fisher PM, Meltzer CC, Ziolko SK, Price JC, Moses-Kolko EL, Berga SL, Hariri AR. Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nat Neurosci 2006;9:1362–1363.

    Article  CAS  PubMed  Google Scholar 

  182. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin (1A) receptor. Proc Natl Acad Sci USA 1998;95:10734–10739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu CH, Kim YR, Ren JQ, Eichler F, Rosen BR, Liu PK. Imaging cerebral gene transcripts in live animals. J Neurosci 2007;27:713–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta - Gen Subjects 1982;714:265–270.

    Article  CAS  Google Scholar 

Bibliography

  • Letliographyology portenhttp://www.crump.ucla.edu. An excellent audiovisual presentation demonstrating basic principles of nuclear medicine with an emphasis on positron emission tomography from cyclotron to clinical applications.

  • Cherry SA, Sorenson JA, Phelps ME. Physics in Nuclear Medicine (4th ed.) Philadelphia: Elsevier-Saunders, 2012.

    Google Scholar 

  • Cox IJ. Development and applications of in vivo clinical magnetic resonance spectroscopy. Prog Biophys Mol Biol 1996:65:45–81.

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (eds.) Statistical Parametric Mapping: The Analysis of Functional Brain Images. Burlington, MA: Academic Press, 2007.

    Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Lounasmaa OV. Magnetoencephalography - Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 1993:65:413–497.

    Article  Google Scholar 

  • Hendee WR, Russell Ritenour E. Medical Imaging Physics (4th ed). New York: Wiley-Liss, 2002.

    Book  Google Scholar 

  • Huettal SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging. Sunderland, MA: Sinauer Associates, 2004.

    Google Scholar 

  • Luck SJ. An Introduction to the Event-Related Potential Technique (Cognitive Neuroscience). Cambridge, MA: MIT Press, 2005.

    Google Scholar 

  • Maudsley AA. Magnetic resonance spectroscopic imaging. In: Toga AW, Mazziotta JC, eds, Brain Mapping: The Methods San Diego: Elsevier Science (USA), 2002.

    Google Scholar 

  • Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006;51:527–539.

    Article  CAS  PubMed  Google Scholar 

  • Pfürtscheller G, Lopes da Silva FH, editors, Event-Related Desynchronization (Handbook of Electroencephalography and Clinical Neurophysiology, Revised Series, volume 6). Amsterdam Elsevier 1999.

    Google Scholar 

  • Russ JC. The Image Processing Handbook (4th ed.). New York: CRC Press, 2002.

    Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nature Rev Neurosci 2001:2:229–239.

    Google Scholar 

  • Vrba J, Robinson SE. Signal processing in magnetoencephalography. Methods 2001:25:249–271.

    Google Scholar 

Free Resources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Pardo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pardo, P.J., Olman, C.A., Pardo, J.V. (2016). Neuroimaging in Psychiatry. In: Fatemi, S., Clayton, P. (eds) The Medical Basis of Psychiatry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2528-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2528-5_40

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2527-8

  • Online ISBN: 978-1-4939-2528-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics