Skip to main content

Factors Affecting Oscillating Motion and Heat Transfer in an OHP

  • Chapter
Oscillating Heat Pipes

Abstract

As described in Chap. 4, the gas spring-mass system consisting of vapor bubbles and liquid plugs is the basis that generates the oscillating motion in an OHP. To form a train of liquid plugs and vapor bubbles, the hydraulic diameter of the channels in an OHP must be small. The evaporation and condensation processes must exist at the same time for a functional OHP. The working fluid also plays an important role in the oscillating motion and heat transfer performance. In this chapter, additional factors will be addressed including heat flux level, check valve, channel layer, gravitational force, wall mass, ultrasound, magnetic field, and hydrophobic wetting condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akachi H, Polasek F, Stulc P (1996) Pulsating heat pipe. In: Proceedings of the 5th International heat pipe symposium, Melbourne, pp 208–217

    Google Scholar 

  • Apfel RE (1984) Acoustic cavitation inception. Ultrasonics 22(4):167–173

    Article  Google Scholar 

  • Bartoli C, Baffigi F (2011) Effects of ultrasonic waves on the heat transfer enhancement in subcooled boiling. Exp Therm Fluid Sci 35:423–432

    Article  Google Scholar 

  • Borgmeyer B, Ma HB (2007) Experimental investigation of oscillating motions in a flat-plate oscillating heat pipe. J Thermophys Heat Transf 21(2):405–409

    Article  Google Scholar 

  • Borgmeyer B, Wilson C, Ma HB (2010) Heat transport capability and fluid flow neutron radiography of a three-dimensional oscillating heat pipes. ASME J Heat Transf 132(6). Article No. 061502

    Google Scholar 

  • Charoensawan P, Terdtoon P (2008) Thermal performance of horizontal closed-loop oscillating heat pipes. Appl Therm Eng 28(5–6):460–466

    Article  Google Scholar 

  • Charoensawan P, Khandekar S, Groll M, Terdtoon P (2003) Closed loop pulsating heat pipes—Part A: parametric experimental investigations. Appl Therm Eng 23(16):2009–2020

    Article  Google Scholar 

  • Curie J, Curie P (1880) Development, via compression, of electric polarization in hemihedral crystals with inclined faces. Bull Soc Mineral 3:90–93

    Google Scholar 

  • Gu J, Kawaji M, Futamata R (2004) Effects of gravity on the performance of pulsating heat pipes. J Thermophys Heat Transf 18(3):370–378

    Article  Google Scholar 

  • Hathaway AA, Wilson CA, Ma HB (2012) An experimental investigation of uneven turn water and acetone oscillating heat pipes. J Heat Transf Thermophys 26(1):115–122

    Article  Google Scholar 

  • Holley B, Faghri A (2005) Analysis of pulsating heat pipe with capillary wick and varying channel diameter. Int J Heat Mass Transf 48(13):2635–2651

    Article  MATH  Google Scholar 

  • Ji Y, Chen H, Kim Y, Yu Q, Ma X, Ma HB (2012) Hydrophobic surface effect on heat transfer performance in an oscillating heat pipe. ASME J Heat Transf 134. Article No. 074502

    Google Scholar 

  • Khandekar S, Schneider M, Schäfer P, Kulenovic R, Groll M (2002) Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes. Microsc Thermophys Eng 6(4):303–317

    Article  Google Scholar 

  • Kim HY, Kim YG, Kang BH (2004) Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration. Int J Heat Mass Transf 47(12–13):2831–2840

    Article  Google Scholar 

  • Kiseev VM, Zolkin KA (1999) The influence of acceleration on the performance of oscillating heat pipe. In: Proceedings of 11th international heat pipe conference, Tokyo, vol 2. pp 154–158

    Google Scholar 

  • Laborde JL, Hita A, Caltagirone JP, Gerard A (2000) Fluid dynamics phenomena induced by power ultrasounds. Ultrasonics 38(1):297–300

    Article  Google Scholar 

  • Lighthill SJ (1978) Acoustic streaming. J Sound Vib 61(3):391–418

    Article  MATH  Google Scholar 

  • Lin YH, Kang SW, Wu TY (2009) Fabrication of polydimethylsiloxane (PDMS) pulsating heat pipe. Appl Therm Eng 29(2–3):573–580

    Article  Google Scholar 

  • Lippman G (1881) Principal of the conservation of electricity. Ann Chem Phys 24:145

    Google Scholar 

  • Liu S, Li J, Dong X, Chen H (2007) Experimental study on flow patterns and improved configurations for pulsating heat pipes. J Therm Sci 16(1):56–62

    Article  Google Scholar 

  • Meena P, Rittidech S, Tammasaeng P (2009) Effect of evaporator section lengths and working fluids on operational limit of closed loop oscillating heat pipes with check valves (CLOHP/CV). Am J Appl Sci 6(1):133–136

    Article  Google Scholar 

  • Mohammadi M, Mohammadi M, Shafii MB (2012) Experimental investigation of a pulsating heat pipe using ferrofluid (magnetic nanofluid). ASME J Heat Transf 134. Article No. 014504

    Google Scholar 

  • Neppiras EA (1984) Acoustic cavitation series: part one. Acoustic cavitation: an introduction. Ultrasonics 22(1):25–28

    Article  Google Scholar 

  • Rittidech S, Pipatpaiboon N, Terdtoon P (2007) Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves. Appl Energy 84(5):565–577

    Article  Google Scholar 

  • Smoot CD, Ma HB (2014) Experimental investigation of a three-layer oscillating heat pipe. ASME J Heat Transf 136(5). Article No. 051501

    Google Scholar 

  • Smoot C, Ma HB, Wilson C, Greenberg L (2011) Heat conduction effect on oscillating heat pipe operation. ASME J Therm Sci Eng Appl 3(3). Article No. 024501

    Google Scholar 

  • Tesla N (1920) Valvular conduit. US Patent #1,329,559

    Google Scholar 

  • Thompson SM, Ma HB (2010) Effect of localized heating on three-dimensional flat-plate oscillating heat pipe. Adv Mech Eng 2010. Article No. 465153

    Google Scholar 

  • Thompson SM, Ma HB (2014) Recent advances in two-phase thermal ground planes. Annu Rev Heat Transf 18, accepted for publication

    Google Scholar 

  • Thompson SM, Ma HB, Wilson C (2011a) Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. J Exp Therm Fluid Sci 35(7):1265–1273

    Article  Google Scholar 

  • Thompson SM, Hathaway AA, Smoot CD, Wilson CA, Ma HB, Young RM, Greenberg L, Osick BR, Van Campen S, Morgan BC, Sharar D, Jankowski N (2011b) Robust thermal performance of a flat-plate oscillating heat pipe during high-gravity loading. ASME J Heat Transf 133(11). Article No. 104504

    Google Scholar 

  • Thompson SM, Cheng P, Ma HB (2011c) An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels. Int J Heat Mass Transf 54(17–18):3951–3959

    Article  Google Scholar 

  • Van Es J, Woering AA (2000) High-acceleration performance of the flat swinging heat pipe. In: Proceedings of the 30th international conference on environmental systems, Toulouse

    Google Scholar 

  • Wilson C, Borgmeyer B, Winholtz RA (2008) Visual observation of oscillating heat pipes using neutron radiography. J Thermophys Heat Transf 22(3):366–372

    Article  Google Scholar 

  • Xu G, Liang S, Vogel M (2006) Thermal characterization of pulsating heat pipes. In: Proceedings of the 10th Intersociety conference on thermal and thermomechanical phenomena in electronics, systems, San Diego, pp 552–556

    Google Scholar 

  • Yang H, Khandekar S, Groll M (2008) Operational limit of closed loop pulsating heat pipes. Appl Therm Eng 28(1):49–59

    Article  Google Scholar 

  • Yang H, Khandekar S, Groll M (2009) Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int J Therm Sci 48(4):815–824

    Article  Google Scholar 

  • Zhao N, Zhao D, Ma HB (2013) Experimental investigation of magnetic field effect on the magnetic nanofluid oscillating heat pipe. ASME J Therm Sci Eng Appl 5(1). Article No. 011005

    Google Scholar 

  • Zhao N, Fu B, Zhao D, Ma HB (2014a) Ultrasonic effect on the oscillating motion and heat transfer in an oscillating heat pipe. ASME J Heat Transf, accepted

    Google Scholar 

  • Zhao N, Fu B, Ma HB (2014b) Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid. Appl Phys Lett 104(26). Article No. 263105

    Google Scholar 

  • Zhou DW, Liu DY, Hu XG, Ma CF (2002) Effect of acoustic cavitation on boiling heat transfer. Exp Therm Fluid Sci 26(8):931–938

    Article  Google Scholar 

  • Zuo ZJ, North MT, Ray L (1999) Combined pulsating and capillary heat pipe mechanism for cooling of high heat flux electronics. In: Proceedings of the ASME heat transfer device conference

    Google Scholar 

  • Zuo J, North MT, Wert KL (2001) High heat flux heat pipe mechanism for cooling of electronics. IEEE Trans Compon Packaging Technol 24(1):220–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ma, H. (2015). Factors Affecting Oscillating Motion and Heat Transfer in an OHP. In: Oscillating Heat Pipes. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2504-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2504-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2503-2

  • Online ISBN: 978-1-4939-2504-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics