Skip to main content

Analgesic Effects of Botulinum Neurotoxins: Data from Animal Studies

  • Chapter
Botulinum Toxin Treatment of Pain Disorders
  • 959 Accesses

Abstract

The availability of novel technologies has been crucial in the discovery and description of new pain receptors and modulators expanding our knowledge of the pathophysiology of pain. Data generated from animal models indicate that botulinum toxins can modify and subdue a variety of mechanisms that generate or maintain pain.

The first part of this chapter provides a brief overview of the pathophysiology of pain in light of some of the new developments. The second part provides a focused review of the literature on how botulinum neurotoxins improve and modify animals’ response to pain as well as the therapeutic influence of these toxins on pain receptors, channels, and mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki KR. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology. 2005;26:785–93.

    Article  CAS  PubMed  Google Scholar 

  • Aoki KR, Francis J. Updates on the antinociceptive mechanism hypothesis of botulinum toxin A. Parkinsonism Relat Disord. 2011;17 Suppl 1:S28–33.

    Article  PubMed  Google Scholar 

  • Bach-Rojecky L, Lackovic Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009;94:234–8.

    Article  CAS  PubMed  Google Scholar 

  • Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, MacDermott AB. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann NY Acad Sci. 2013;1279:90–6.

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Yoshimura N, Huang CC, Wu M, Chiang PH, Chancellor MB. Intraprostatic botulinum toxinA injection inhibits cyclooxygenase-2 expression and suppresses prostatic pain on capsaicin induced prostatitis model in rat. J Urol. 2008;180:742–8.

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Khanijou S, Rubino J, Aoki KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain. 2004;107:125–33.

    Article  CAS  PubMed  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405:183–7.

    Article  CAS  PubMed  Google Scholar 

  • Drinovac V, Bach-Rojecky L, Lackovic’ Z. Association of antinociceptive action of botulinum toxin type A with GABA-A receptor. J Neural Transm. 2014;121:665–9.

    Article  CAS  PubMed  Google Scholar 

  • Filippi GM, Errico P, Santarelli R, Bagolini B, Manni E. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol. 1993;113:400–4.

    Article  CAS  PubMed  Google Scholar 

  • Fischer TZ, Waxman SG. Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann N Y Acad Sci. 2010;1184:196–207.

    Article  CAS  PubMed  Google Scholar 

  • Guo BL, Zheng CX, Sui BD, Li YQ, Wang YY, Yang YL. A closer look to botulinum neurotoxin type A-induced analgesia. Toxicon. 2013;71:134–9.

    Article  CAS  PubMed  Google Scholar 

  • Jabbari B. Botulinum neurotoxins in the treatment of refractory pain. Nat Clin Pract Neurol. 2008;4:676–85.

    Article  CAS  PubMed  Google Scholar 

  • Jabbari B, Machado D. Treatment of refractory pain with botulinum toxins–an evidence-based review. Pain Med. 2011;12:1594–606.

    Article  PubMed  Google Scholar 

  • Kumamoto E, Fujita T, Jiang CY. TRP channels involved in spontaneous L-glutamate release enhancement in the adult rat spinal substantia gelatinosa. Cells. 2014;3:331–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lane NE, Schnitzer TJ, Birbara CA, Mokhtarani M, Shelton DL, Smith MD, Brown MT. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med. 2010;363:1521–31.

    Article  CAS  PubMed  Google Scholar 

  • Lucioni A, Bales GT, Lotan TL, McGehee DS, Cook SP, Rapp DE. Botulinum toxin type A inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation. BJU Int. 2008;101:366–70.

    Article  CAS  PubMed  Google Scholar 

  • Marinelli S, Luvisetto S, Cobianchi S, Makuch W, Obara I, Mezzaroma E, Caruso M. Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience. 2010;171:316–28.

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Terashima T, Steinauer JJ, Eddinger KA, Yaksh TL, Xu Q. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain. 2014;155:674–84.

    Article  CAS  PubMed  Google Scholar 

  • Mazzocchio R, Caleo M. More than at the neuromuscular synapse: actions of botulinum neurotoxin a in the central nervous system. Neuroscientist. 2014;21:44–61.

    Article  PubMed  Google Scholar 

  • McMahon SB, Bennet DLH, Bevan S. Inflammatory mediators and modulators. In: McMahon SB, Koltzenburg M, editors. Wall and Melzack’s textbook of pain. Edinburgh: Elsevier Churchill Livingstone; 2006. p. 49–72.

    Chapter  Google Scholar 

  • Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:917–9.

    Google Scholar 

  • Meng J, Wang J, Lawrence G, Dolly JO. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007;120:2864–74.

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29:4981–92.

    Article  CAS  PubMed  Google Scholar 

  • Namazi H. Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis: a molecular mechanism. Urology. 2008;72:463–4.

    Article  PubMed  Google Scholar 

  • Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005;115:2393–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priestley JV, Michael GJ, Averill S, Liu M, Willmott N. Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor. Can J Physiol Pharmacol. 2002;80:495–505.

    Article  CAS  PubMed  Google Scholar 

  • Rand MJ, Whaler BC. Impairment of sympathetic transmission by botulinum toxin. Nature. 1965;206:588–91.

    Article  CAS  PubMed  Google Scholar 

  • Schaible HG. Peripheral and central mechanisms of pain generation. Handb Exp Pharmacol. 2007;177:3–28.

    Article  CAS  PubMed  Google Scholar 

  • Schaible HG, Ebersberger A, Natura G. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res Ther. 2011;13:210.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shin MC, Wakita M, Xie DJ, Yamaga T, Iwata S, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Akaike N. Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J Pharmacol Sci. 2012;118:33–42.

    Article  CAS  PubMed  Google Scholar 

  • Snider WD, McMahon SB. Tackling pain at the source: new ideas about nociceptors. Neuron. 1998;20:629–32.

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Clark JD, Oh U, Vasko MR, Wilcox GL, Overland AC, Vanderah TW, Spencer RH. Peripheral mechanisms of pain and analgesia. Brain Res Rev. 2009;60:90–113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watabiki T, Kiso T, Tsukamoto M, Aoki T, Matsuoka N. Intrathecal administration of AS1928370, a transient receptor potential vanilloid 1 antagonist, attenuates mechanical allodynia in a mouse model of neuropathic pain. Biol Pharm Bull. 2011;34:1105–8.

    Article  CAS  PubMed  Google Scholar 

  • Welch MJ, Purkis JR, Foster KA. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon. 2000;38:245–58.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler-Aceto H, Porreca F, Cowan A. The rat paw formalin test: comparison of noxious agents. Pain. 1990;40:229–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jabbari, B. (2015). Analgesic Effects of Botulinum Neurotoxins: Data from Animal Studies. In: Botulinum Toxin Treatment of Pain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2501-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2501-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2500-1

  • Online ISBN: 978-1-4939-2501-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics