Skip to main content

Survival Signalling in the Preimplantation Embryo

  • Chapter
  • First Online:
Cell Signaling During Mammalian Early Embryo Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 843))

Abstract

The development of the preimplantation embryo (from fertilisation until the formation of the differentiated blastocyst) occurs without a requirement for exogenous mitogenic or survival signals. This distinguishes the behaviour of cells in the early embryo from all other normal cells. The discovery that fertilisation triggers the production and release of potent bioactive mediators by the embryo that act back on membrane receptors demonstrated the presence of closed autocrine embryotrophic loops. It is now clear that these ligands act in concert with paracrine mediators normally present within the reproductive tract to support the normal development of the embryo. These ligands act via receptors expressed by the embryo to activate signalling transduced by 1-o-phosphatidylinositol-3-kinase and the resultant formation of phosphatidylinositol-3,4,5-trisphosphate. This polyphosphorylated membrane phospholipid acts as a docking site for proteins possessing the PH domain. These include PDK1, AKT and phospholipase C. The activation of these proteins accounts for the initiation of new transcription from the embryonic genome to form a pro-survival, anti-apoptotic transcriptome and the post-transcriptional activation of pro-survival signalling within embryonic cells. This includes the attenuation of action of pro-apoptotic signals, such as P53. The production of embryotrophic ligands after fertilisation bootstraps development by the activation of transcription from the embryonic genome, followed by the activation of pro-survival settings within embryo cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson ED. Activities of growth factors in preimplantation embryos. J Cell Biochem. 1993;53:280–7.

    Article  CAS  PubMed  Google Scholar 

  • Almagor M, Bejar C, Kafka I, Yaffe H. Pregnancy rates after communal growth of preimplantation human embryos in vitro. Fertil Steril. 1996;66:394–7.

    CAS  PubMed  Google Scholar 

  • Ammit AJ, O’Neill C. The role of albumin in the release of platelet-activating factor by mouse preimplantation embryos in vitro. J Reprod Fertil. 1997a;109:309–18.

    Article  CAS  PubMed  Google Scholar 

  • Ammit AJ, O’Neill C. Comparison of a radioimmunoassay and bioassay for embryo-derived platelet-activating factor. Human Reprod. 1991;6:872–8.

    Google Scholar 

  • Ammit AJ, O’Neill C. Studies of the nature of the binding by albumin of platelet-activating factor released from cells. J Biol Chem. 1997b;272:18772–8.

    Article  CAS  PubMed  Google Scholar 

  • Battye KM, Ammit AJ, O’Neill C, Evans G. Production of platelet-activating factor by the preimplantation sheep embryo. J Reprod Fertil. 1991;93:507–14.

    Article  CAS  PubMed  Google Scholar 

  • Banks JB, Wykle RL, O’Flaherty JT, Lumb RH. Evidence for protein-catalyzed transfer of platelet activating factor by macrophage cytosol. Biochim Biophys Acta. 1988;961:48–52.

    Google Scholar 

  • Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science. 1997;275:1930–3.

    Article  CAS  PubMed  Google Scholar 

  • Beardsley A, Li Y, O’Neill C. Characterization of a diverse secretome generated by the mouse preimplantation embryo in vitro. Reprod Biol Endocrinol. 2010;8:71.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benveniste J, Henson PM, Cochrane CG. Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med. 1972;136:1356–77.Bi L, Okabe I, Bernard DJ, Nussbaum RL. Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome. 2002;13:169–72.

    CAS  PubMed  Google Scholar 

  • Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schutz G. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol. 2002;22:1919–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bratton DL, Clay KL, Henson PM. A model for the extracellular release of PAF: the influence of plasma membrane phospholipid asymmetry. Biochim Biophys Acta. 1991;1062:24–34.

    Google Scholar 

  • Chandrakanthan V, Li A, Chami O, O’Neill C. Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos. Reprod Biol Endocrinol. 2006;4:61–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandrakanthan V, Chami O, Stojanov T, O’Neill C. Variable expressivity of the tumour suppressor protein TRP53 in cryopreserved human blastocysts. Reprod Biol Endocrinol. 2007;5:39.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chi MM-Y, Pingsterhaus J, Carayannopoulos M, Moley KH. Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem. 2000;275:40252–7.

    Article  CAS  PubMed  Google Scholar 

  • Chin PY, Macpherson AM, Thompson JG, Lane M, Robertson SA. Stress response genes are suppressed in mouse preimplantation embryos by granulocyte-macrophage colony-stimulating factor (GM-CSF). Hum Reprod. 2009;24:2997–9.

    Article  CAS  PubMed  Google Scholar 

  • Collier M, O’Neill C, Ammit AJ, Saunders DM. Biochemical and pharmacological characterisation of human embryo-derived platelet activating factor. Hum Reprod. 1988;3:993–8.

    CAS  PubMed  Google Scholar 

  • Cristofano AD, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998;19:348–55.

    Article  PubMed  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–27.

    Article  CAS  PubMed  Google Scholar 

  • Downward J. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004;15:177–82.

    Article  CAS  PubMed  Google Scholar 

  • Ebner T, Shebl O, Moser M, Mayer RB, Arzt W, Tews G. Group culture of human zygotes is superior to individual culture in terms of blastulation, implantation and life birth. Reprod Biomed Online. 2010;21:762–8.

    Article  CAS  PubMed  Google Scholar 

  • Emerson M, Travis AR, Bathgate R, Stojanov T, Cook DI, Harding E, Lu DP, O’Neill C. Characterization and functional significance of calcium transients in the 2-cell mouse embryo induced by an autocrine growth factor. J Biol Chem. 2000;275:21905–13.

    Article  CAS  PubMed  Google Scholar 

  • Ernest S, Bello-Reuss E. Secretion of platelet-activating factor is mediated by MDR1 P-glycoprotein in cultured human mesangial cells. J Am Soc Nephrol. 1999;10:2306–13.

    Google Scholar 

  • Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A. 2000;97:11960–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng C, Yu A, Liu Y, Zhang J, Zong Z, Su W, Zhang Z, Yu D, Sun Q-Y, Yu B. Involvement of protein kinase B/AKT in early development of mouse fertilized eggs. Biol Reprod. 2007;77:560–8.

    Article  CAS  PubMed  Google Scholar 

  • Ganeshan L, Li A, O’Neill C. Transformation-related protein 53 expression in the early mouse embryo compromises preimplantation embryonic development by preventing the formation of a proliferating inner cell mass. Biol Reprod. 2010;83:958–64.

    Article  CAS  PubMed  Google Scholar 

  • Gopichandran N, Leese HJ. The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction. 2006;131:269–77.

    Article  CAS  PubMed  Google Scholar 

  • Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog Neurobiol. 2001;65:391–426.

    Article  CAS  PubMed  Google Scholar 

  • Gross V, Hess M, Cooper G. Mouse embryonic stem cells and preimplantation embryos require signaling through the phosphatidylinositol 3-kinase pathway to suppress apoptosis. Mol Reprod Dev. 2005;70:324–32.

    Article  CAS  PubMed  Google Scholar 

  • Halet G, Viard P, Carroll J. Constitutive PtdIns(3,4,5)P3 synthesis promotes the development and survival of early mammalian embryos. Develop. 2008;135:425–9.

    Article  CAS  Google Scholar 

  • Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol. 2002;172:221–36.

    Article  CAS  PubMed  Google Scholar 

  • Harvey MB, Kaye PL. IGF-2 stimulates growth and metabolism of early mouse embryos. Mech Dev. 1992a;38:169–74.

    Article  CAS  PubMed  Google Scholar 

  • Harvey MB, Kaye PL. Insulin-like growth factor-1 stimulates growth of mouse preimplantation embryos in vitro. Mol Reprod Dev. 1992b;31:195–9.

    Article  CAS  PubMed  Google Scholar 

  • Harvey MB, Leco KJ, Arcellana-Panlilio MY, Zhang X, Edwards DR, Schultz G. Roles of growth factors during peri-implantation development. Hum Reprod. 1995;10:712–8.

    CAS  PubMed  Google Scholar 

  • Heyner S, Rao LV, Jarett L, Smith RM. Preimplantation mouse embryos internalize maternal insulin via receptor-mediated endocytosis: pattern of uptake and functional correlations. Dev Biol. 1989a;134:48–58.

    Article  CAS  PubMed  Google Scholar 

  • Heyner S, Smith RM, Schultz GA. Temporally regulated expression of insulin and insulin-like growth factors in early mammalian development. BioEssays. 1989b;11:171–6.

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature. 2009;460:1132–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C, Mason JT, Stephenson FA, Levin IW. Polymorphic phase behavior of platelet-activating factor. Biophys J. 1986;49:587–95.

    Google Scholar 

  • Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH. Defining the CREB regulon: A genome-wide analysis of transcription factor regulatory regions. Cell. 2004;119:1041–54.

    CAS  PubMed  Google Scholar 

  • Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, et al. Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med. 1998;187:1779–88.

    Google Scholar 

  • Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88:347–54.

    Article  CAS  PubMed  Google Scholar 

  • Jin XL, O’Neill C. cAMP-responsive element-binding protein expression and regulation in the mouse preimplantation embryo. Reproduction. 2007;134:1–10.

    Article  Google Scholar 

  • Jin XL, O’Neill C. The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo. Biol Reprod. 2010;82:459–68.

    Article  CAS  PubMed  Google Scholar 

  • Jin XL, O’Neill C. Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo. Biol Reprod. 2011;84:1216–24.

    Article  CAS  PubMed  Google Scholar 

  • Jin XL, Chandrakanthan V, Morgan HD, O’Neill C. Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol Reprod. 2009;80:286–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378:206–8.

    Article  CAS  PubMed  Google Scholar 

  • Kamp TJ, Chiamvimonvat N. Mission impossible: IGF-1 and PTEN specifically “Akt”ing on cardiac L-Type Ca2+ channels. Circ Res. 2006;98:1349–51.

    Article  CAS  PubMed  Google Scholar 

  • Kane MT, Morgan PM, Coonan C. Peptide growth factors and preimplantation development. Hum Reprod Update. 1997;3:137–57.

    Article  CAS  PubMed  Google Scholar 

  • Kantar A, Giorgi G, Fiorini R. Effect of PAF on erythrocyte membrane heterogeneity: a fluorescence study. Agents Actions. 1991;32:347–50.

    Google Scholar 

  • Kawamura K, Fukuda J, Shimizu Y, Kodama H, Tanaka T. Survivin contributes to the anti-apoptotic activities of transforming growth factor alpha in mouse blastocysts through phosphatidylinositol 3'-kinase pathway. Biol Reprod. 2005;73:1094–101.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Belmonte JCI. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature. 2009;460:1140–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaye PL, Harvey MB. The role of growth factors in preimplantation development. Prog Growth Fact Res. 1995;6:1–24.

    Article  CAS  Google Scholar 

  • Kinjo K, Sandoval S, Sakamoto KM, Shankar DB. The role of CREB as a proto-oncogene in hematopoiesis. Cell Cycle. 2005;4:1134–5.

    Article  CAS  PubMed  Google Scholar 

  • Kulik G, Weber MJ. Akt-dependent and -independent survival signaling pathways utilized by insulin-like growth factor I. Mol Cell Biol. 1998;18:6711–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kramp W, Pieroni G, Pinckard RN, Hanahan DJ. Observations on the critical micellar concentration of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and a series of its homologs and analogs. Chem Phys Lipids. 1984;35:49–62.

    Google Scholar 

  • Lane M, Gardner DK. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum Reprod. 1992;7:558–62.

    CAS  PubMed  Google Scholar 

  • Le Blanc C, Mironneau C, Barbot C, Henaff M, Bondeva T, Wetzker R, Macrez N. Regulation of vascular L-type Ca2+ channels by phosphatidylinositol 3,4,5-trisphosphate. Circ Res. 2004;95:300–7.

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA. Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp. 2007;74:81–93.

    Article  CAS  PubMed  Google Scholar 

  • Li A, Chandrakanthan V, Chami O, O’Neill C. Culture of zygotes Increases TRP53 expression in B6 mouse embryos which reduces embryo viability. Biol Reprod. 2007a;76:362–7.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chandrakanthan V, Day ML, O’Neill C. Direct evidence for the action of phosphatidylinositol (3,4,5)-trisphosphate-mediated signal transduction in the 2-cell mouse embryo. Biol Reprod. 2007b;77:813–21.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Day ML, O’Neill C. Autocrine activation of ion currents in the two-cell mouse embryo. Exp Cell Res. 2007c;313:2786–94.

    Article  CAS  PubMed  Google Scholar 

  • Li A, Ganeshan L, O’Neill C. The effect of Trp53 gene-dosage and parent-of-origin of inheritance on mouse gamete and embryo function in vitro. Biol Reprod. 2012;86:1–6.

    Article  Google Scholar 

  • Lu DP, Li Y, Bathgate R, Day M, O’Neill C. Ligand-activated signal transduction in the 2-cell embryo. Biol Reprod. 2003;69:106–16.

    Article  CAS  PubMed  Google Scholar 

  • Lu DP, Chandrakanthan V, Cahana A, Ishii S, O’Neill C. Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development. J Cell Sci. 2004;117:1567–76.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig JC, Hoppens CL, McManus LM, Mott GE, Pinckard RN. Modulation of platelet-activating factor (PAF) synthesis and release from human polymorphonuclear leukocytes (PMN): role of extracellular albumin. Arch Biochem Biophys. 1985;241:337–47.

    Google Scholar 

  • Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A. 2001;98:11598–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minhas BS, Zhu Y, Kim H, Burwinkel TH, Ripps BA, Buster JE. Embryonic platelet activating factor production in the rabbit increases during the preimplantation phase. J Assist Reprod Genet. 1993;10:366–70.

    Article  CAS  PubMed  Google Scholar 

  • Moessner J, Dodson WC. The quality of human embryo growth is improved when embryos are cultured in groups rather than separately. Fertil Steril. 1995;64:1034–5.

    CAS  PubMed  Google Scholar 

  • Moll UM, Petrenko O. The MDM2-p53 Interaction. Mol Cancer Res. 2003;1:1001–8.

    CAS  PubMed  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203–5.

    Article  Google Scholar 

  • Mora A, Komander D, van Aalten DM, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol. 2004;15:161–70.

    Google Scholar 

  • Nagao Y, Iijima R, Saeki K. Interaction between embryos and culture conditions during in vitro development of bovine early embryos. Zygote. 2008;16:127–33.

    Article  CAS  PubMed  Google Scholar 

  • Navarrete Santos A, Ramin N, Tonack S, Fischer B. Cell lineage-specific signaling of insulin and insulin-like growth factor I in rabbit blastocysts. Endocrinology. 2008;149:515–24.

    Article  PubMed  Google Scholar 

  • O’Neill C. Partial characterisation of the embryo-derived platelet activating factor in mice. J Reprod Fertil. 1985;75:375–80.

    Article  PubMed  Google Scholar 

  • O’Neill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod. 1997;56:229–37.

    Article  PubMed  Google Scholar 

  • O’Neill C. Autocrine mediators are required to act on the embryo by the 2-cell stage to promote normal development and survival of mouse preimplantation embryos in vitro. Biol Reprod. 1998;58:1303–9.

    Article  PubMed  Google Scholar 

  • O’Neill C. The role of paf in embryo physiology. Hum Reprod Update. 2005;11:215–28.

    Article  PubMed  Google Scholar 

  • O’Neill C. The potential roles for embryotrophic ligands in preimplantation embryo development. Hum Reprod Update. 2008a;14:275–88.

    Article  PubMed  Google Scholar 

  • O’Neill C. Phosphatidylinositol 3-kinase signaling in mammalian preimplantation embryo development. Reproduction. 2008b;136:147–56.

    Article  PubMed  Google Scholar 

  • Paria BC, Dey SK. Preimplantation embryo development in vitro: Cooperative interactions among embryos and the role of growth factors. Proc Natl Acad Sci U S A. 1990;87:4756–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raff MC, Barres BA, Burne JF, Coles HSR, Ishizaki Y, Jacobsen MD. Programmed cell death and the control of cell survival. Phil Trans R Soc Lond B. 1994;345:265–8.

    Article  CAS  Google Scholar 

  • Raggers RJ, Vogels I, van Meer G. Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. Biochem J. 2001;357:859–65.

    Google Scholar 

  • Rebecchi MJ, Scarlata S. Pleckstrin homology domains: A common fold with diverse functions. Annu Rev Biophys Biomol Struct. 1998;27:503–28.

    Article  CAS  PubMed  Google Scholar 

  • Rijnders PM, Jansen CAM. Influence of group culture and culture volume on the formation of human blastocysts: a prospective randomized study. Hum Reprod. 1999;14:2333–7.

    Article  CAS  PubMed  Google Scholar 

  • Riley JK, Carayannopoulos MO, Wyman AH, Chi M, Ratajczak CK, Moley KH. The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev Biol. 2005;284:377–86.

    Article  CAS  PubMed  Google Scholar 

  • Roberts C, O’Neill C, Wright L. Platelet activating factor (PAF) enhances mitosis in preimplantation mouse embryos. Reprod Fertil Dev. 1993;5:271–9.

    Article  CAS  PubMed  Google Scholar 

  • Roudebush WE, Wininger JD, Jones AE, Wright G, Toledo AA, et al. Embryonic platelet-activating factor: an indicator of embryo viability. Human Reprod. 2002;17:1306–10.

    Google Scholar 

  • Salvador I, Cebrian-Serrano A, Salamone D, Silvestre MA. Effect of number of oocytes and embryos on in vitro oocyte maturation, fertilization and embryo development in bovine. Spanish J Agric Res. 2011;9:744–752.

    Google Scholar 

  • Sanford TR, De M, Wood GW. Expression of colony-stimulating factors and inflammatory cytokines in the uterus of CD1 mice during days 1–3 of pregnancy. J Reprod Fertil. 1992;94:213–20.

    Article  CAS  PubMed  Google Scholar 

  • Shaywitz AJ, Greenberg ME. CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev. 2000;10:94–9.

    Article  CAS  PubMed  Google Scholar 

  • Siu Y-T, Jin D-Y. CREB–a real culprit in oncogenesis. FEBS J. 2007;274:3224–32.

    Article  CAS  PubMed  Google Scholar 

  • Spindler RE, Wildt DE. Quality and Age of companion felid embryos modulate enhanced development by group culture. Biol Reprod. 2002;66:167–73.

    Article  CAS  PubMed  Google Scholar 

  • Spindler RE, Crichton EG, Agca Y, Loskutoff N, Critser J, Gardner DK, Wildt DE. Improved felid embryo development by group culture is maintained with heterospecific companions. Theriogenology. 2006;66:82–92.

    Article  PubMed  Google Scholar 

  • Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP, Farese RV. Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) Sites. BioChemistry. 2001;40:249–55.

    Article  CAS  PubMed  Google Scholar 

  • Stock AE, Hansel W. Assay of embryo-derived platelet activating factor (EDPAF) by an equine platelet aggregation assay: Preliminary data concerning its presence in bovine embryo culture media. Theriogenology. 1992;38:757–68.

    Article  CAS  PubMed  Google Scholar 

  • Stoddart NR, Roudebush WE, Fleming SD. Exogenous platelet-activating factor stimulates cell proliferation in mouse pre-implantation embryos prior to the fourth cell cycle and shows isoform-specific stimulatory effects. Zygote. 2001;9:261–8.

    Article  CAS  PubMed  Google Scholar 

  • Stojanov T, O’Neill C. Ontogeny of expression of a receptor for platelet-activating factor in mouse preimplantation embryos and the effects of fertilisation and culture in vitro. Biol Reprod. 1999;60:674–82.

    Google Scholar 

  • Stokes PJ, Abeydeera LR, Leese HJ. Development of porcine embryos in vivo and in vitro; evidence for embryo ‘cross talk’ in vitro. Dev Biol. 2005;284:62–71.

    Article  CAS  PubMed  Google Scholar 

  • Velasquez LA, Aguilera JG, Croxatto HB. Possible role of platelet-activating factor in embryonic signalling during oviductal transport in the hamster. Biol Reprod. 1995;52:1302–6.

    Article  CAS  PubMed  Google Scholar 

  • Walton MR, Dragunow M. Is CREB a key to neuronal survival? Trends in. Neuroscience. 2000;23:48–53.

    CAS  Google Scholar 

  • Wang J, Rout UK, Bagchi IC, Armant DR. Expression of calcitonin receptors in mouse preimplantation embryos and their function in the regulation of blastocyst differentiation by calcitonin. Development. 1998;125:4293–302.

    CAS  PubMed  Google Scholar 

  • Wang J, Mayernik L, Armant DR. Trophoblast adhesion of the peri-implantation mouse blastocyst is regulated by integrin signaling that targets phospholipase C. Dev Biol. 2007;302:143–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weil M, Jacobson MD, Coles HSR, Davies TJ, Gardner RL, Raff KD, Raff MC. Constitutive expression of the machinery for programmed cell death. J Cell Biol. 1996;133:1053–9.

    Article  CAS  PubMed  Google Scholar 

  • Wells XE, O’Neill C. Biosynthesis of platelet-activating factor by the mouse two-embryo. J Reprod Fertil. 1992;96:61–71.

    Article  CAS  PubMed  Google Scholar 

  • Wells XE, O’Neill C. Detection and preliminary characterization of two enzymes involved in biosynthesis of platelet-activating factor in mouse oocytes, zygotes and preimplantation embryos: dithiothreitol-insensitive cytidinediphospho-choline:1-o-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase and acetyl-coenzyme A:1-o-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase. J Reprod Fertil. 1994;101:385–91.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2010;35:161–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu C, Stojanov T, Chami O, Ishii S, Shimizu T, Li A, O’Neill C. Evidence for the autocrine induction of capacitation of mammalian spermatozoa. J Biol Chem. 2001;276:26962–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu J-S, Cheung T-M, Ting-Hon Chan S, Ho P-C, Shu-Biu Yeung W. Temporal effect of human oviductal cell and its derived embryotrophic factors on mouse embryo development. Biol Reprod. 2001;65:1481–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Odom DT, Koo S-H, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 2005;102:4459–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, Yong J, Zhang P, Cai J, Liu M, Li H, Li Y, Qu X, Cui K, Zhang W, Xiang T, Wu Y, Zhao Y, Liu C, Yu C, Yuan K, Lou J, Ding M, Deng H. Two Supporting Factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell. 2008;3:475–9.

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Gorre N, Shen Y, Noda T, Ogawa W, Lundin E, Liu K. Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis. EMBO Rep. 2010;11:890–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work on this topic has been supported by grants from the Australian National Health and Medical Research Council to CO

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Neill, C., Li, Y., Jin, X. (2015). Survival Signalling in the Preimplantation Embryo. In: Leese, H., Brison, D. (eds) Cell Signaling During Mammalian Early Embryo Development. Advances in Experimental Medicine and Biology, vol 843. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2480-6_5

Download citation

Publish with us

Policies and ethics