Skip to main content

The Role of Hexosamine Biosynthesis and Signaling in Early Development

  • Chapter
  • First Online:
Cell Signaling During Mammalian Early Embryo Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 843))

Abstract

Although the culture requirements and the metabolic profile of the preimplantation embryo have been thoroughly investigated since their first successful culture in a defined medium, now more than 50 years ago (Whitten, Nature 177:96, 1956), it is only recently that we have begun to appreciate the impact of the environment on life-course trajectory. The mechanisms involved in how nutrient availability may potentially modulate developmental potential are consequently not well defined. Originally thought of as simple energy substrates and biosynthetic precursors, the currently emerging paradigm suggests that nutrients may act in non-classical roles to impact on developmental potential. This is now an area of considerable activity thanks to pioneering epidemiological studies (Barker et al., BMJ 298:564–7, 1989) that have led to the establishment of the Developmental Origins of Health and Disease (DoHAD) hypothesis and a whole new field of research activity. The period prior to implantation is of particular interest as this has been identified as a critical window of developmental sensitivity to environmental or nutrient stress (Fleming et al., Biol Reprod 71:1046–54, 2004a). This review seeks specifically to explore the pivotal role of glucose in early mouse development and the mechanisms by which it may impact on the cellular functions of the developing embryo. The emerging paradigm suggests that this humble hexose sugar may be at the heart of a rather sophisticated mechanism of cellular control that not only impacts on cellular proliferation and viability in the short term but on cellular memory through to the next generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acey RA, Hazlett LD, Dabich D. Mouse blastocysts pulse labeled with 14C-glucosamine: incorporation and ultrastructural analysis. Biol Reprod. 1977;16:564–70.

    CAS  PubMed  Google Scholar 

  • Aghayan M, Rao LV, Smith RM, Jarett L, Charron MJ, Thorens B, Heyner S. Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development. Development. 1992;115:305–12.

    CAS  PubMed  Google Scholar 

  • Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298:564–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A. 1967;58:560–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN, Dennis JW, Mak TW. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J. 2000;19:5092–104.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bowman P, Mclaren A. Cleavage rate of mouse embryos in vivo and in vitro. J Embryol Exp Morphol. 1970;24:203–7.

    CAS  PubMed  Google Scholar 

  • Brinster RL. Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil. 1965;10:227–40.

    CAS  PubMed  Google Scholar 

  • Brinster RL, Thomson JL. Development of eight-cell mouse embryos in vitro. Exp Cell Res. 1966;42:308–15.

    CAS  PubMed  Google Scholar 

  • Brinster RL. Uptake and incorporation of amino acids by the preimplantation mouse embryo. J Reprod Fertil. 1971;27:329–38.

    CAS  PubMed  Google Scholar 

  • Brown JJ, Whittingham DG. The roles of pyruvate, lactate and glucose during preimplantation development of embryos from F1 hybrid mice in vitro. Development. 1991;112:99–105.

    CAS  PubMed  Google Scholar 

  • Brown JJ, Whittingham DG. The dynamic provision of different energy substrates improves development of one-cell random-bred mouse embryos in vitro. J Reprod Fertil. 1992;95:503–11.

    CAS  PubMed  Google Scholar 

  • Buse MG, Robinson KA, Marshall BA, Mueckler M. Differential effects of GLUT1 or GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice. J Biol Chem. 1996;271:23197–202.

    CAS  PubMed  Google Scholar 

  • Champattanachai V, Marchase RB, Chatham JC. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am J Physiol Cell Physiol. 2008;294:C1509–20. doi:10.1152/ajpcell.00456.2007. Epub 2008 Mar 26.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil. 1989;86:679–88.

    CAS  PubMed  Google Scholar 

  • Chatot CL, Lewis-Williams J, Torres I, Ziomek CA. One-minute exposure of 4-cell mouse embryos to glucose overcomes morula block in CZB medium. Mol Reprod Dev. 1994;37:407–12.

    CAS  PubMed  Google Scholar 

  • Chi MM, Pingsterhaus J, Carayannopoulos M, Moley KH. Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem. 2000;275:40252–7.

    CAS  PubMed  Google Scholar 

  • Chou TY, Hart GW, Dang CV. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem. 1995;270:18961–5.

    CAS  PubMed  Google Scholar 

  • Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, Kang ML, Wong CH, Juan LJ. O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci U S A. 2014;111:1355–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Comer FI, Hart GW. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry. 2001;40:7845–52.

    CAS  PubMed  Google Scholar 

  • Conaghan J, Handyside AH, Winston RM, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil. 1993;99:87–95.

    CAS  PubMed  Google Scholar 

  • Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol. 2012;2:863–914.

    PubMed Central  PubMed  Google Scholar 

  • De Hertogh R, Vanderheyden I, Pampfer S, Robin D, Dufrasne E, Delcourt J. Stimulatory and inhibitory effects of glucose and insulin on rat blastocyst development in vitro. Diabetes. 1991;40:641–7.

    PubMed  Google Scholar 

  • Dean W. DNA methylation and demethylation: a pathway to gametogenesis and development. Mol Reprod Dev. 2014;81:113–25. doi:10.1002/mrd.22280. Epub 2013 Dec 17.

    CAS  PubMed  Google Scholar 

  • Diamond MP, Pettway ZY, Logan J, Moley K, Vaughn W, Decherney AH. Dose-response effects of glucose, insulin, and glucagon on mouse pre-embryo development. Metabolism. 1991;40:566–70.

    CAS  PubMed  Google Scholar 

  • El Mouatassim S, Hazout A, Bellec V, Menezo Y. Glucose metabolism during the final stage of human oocyte maturation: genetic expression of hexokinase, glucose phosphate isomerase and phosphofructokinase. Zygote. 1999;7:45–50.

    CAS  PubMed  Google Scholar 

  • Fleming TP, Kwong WY, Porter R, Ursell E, Fesenko I, Wilkins A, Miller DJ, Watkins AJ, Eckert JJ. The embryo and its future. Biol Reprod. 2004a;71:1046–54.

    CAS  PubMed  Google Scholar 

  • Fleming TP, Wilkins A, Mears A, Miller DJ, Thomas F, Ghassemifar MR, Fesenko I, Sheth B, Kwong WY, Eckert JJ. Society for Reproductive Biology Founders’ Lecture 2003. The making of an embryo: short-term goals and long-term implications. Reprod Fertil Dev. 2004b;16:325–37.

    PubMed  Google Scholar 

  • Fleming TP, Velazquez MA, Eckert JJ, Lucas ES, Watkins AJ. Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim Reprod Sci. 2012;130:193–7.

    CAS  PubMed  Google Scholar 

  • Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, Sifers RN. β-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem. 2012;287:12195–203. doi:10.1074/jbc.M111.315804. Epub 2012 Feb 27.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forrest AR, Ravasi T, Taylor D, Huber T, Hume DA, Grimmond S. Phosphoregulators: protein kinases and protein phosphatases of mouse. Genome Res. 2003;13:1443–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frank LA, Sutton-Mcdowall ML, Russell DL, Wang X, Feil DK, Gilchrist RB, Thompson JG. Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod Fertil Dev. 2013;25:1095–104.

    CAS  PubMed  Google Scholar 

  • Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K, Kanno J, Ohtake F, Kitagawa H, Roeder RG, Brown M, Kato S. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 2011;480:557–60. doi:10.1038/nature10656.

    CAS  PubMed  Google Scholar 

  • Gardner HG, Kaye PL. Characterization of glucose transport in preimplantation mouse embryos. Reprod Fertil Dev. 1995;7:41–50.

    CAS  PubMed  Google Scholar 

  • Gloster TM, Vocadlo DJ. Mechanism, structure, and inhibition of O-GlcNAc processing enzymes. Curr Signal Transduct Ther. 2010;5:74–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg HJ, Whiteside CI, Hart GW, Fantus IG. Posttranslational, reversible O-glycosylation is stimulated by high glucose and mediates plasminogen activator inhibitor-1 gene expression and Sp1 transcriptional activity in glomerular mesangial cells. Endocrinology. 2006;147:222–31.

    CAS  PubMed  Google Scholar 

  • Guinez C, Mir AM, Dehennaut V, Cacan R, Harduin-Lepers A, Michalski JC, Lefebvre T. Protein ubiquitination is modulated by O-GlcNAc glycosylation. FASEB J. 2008;22:2901–11.

    CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Blomberg MA, Hart GW. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem. 1992;267:9005–13.

    CAS  PubMed  Google Scholar 

  • Han I, Kudlow JE. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol. 1997;17:2550–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys. 2003;409:287–97.

    CAS  PubMed  Google Scholar 

  • Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta. 2010;1800:80–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanover JA, Krause MW, Love DC. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol. 2012;13:312–21.

    CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–22.

    CAS  PubMed  Google Scholar 

  • Hawkins M, Barzilai N, Chen W, Angelov I, Hu M, Cohen P, Rossetti L. Increased hexosamine availability similarly impairs the action of insulin and IGF-1 on glucose disposal. Diabetes. 1996;45:1734–43.

    CAS  PubMed  Google Scholar 

  • Hebert LF Jr., Daniels MC, Zhou J, Crook ED, Turner RL, Simmons ST, Neidigh JL, Zhu JS, Baron AD, Mcclain DA. Overexpression of glutamine: fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest. 1996;98:930–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heckel D, Comtesse N, Brass N, Blin N, Zang KD, Meese E. Novel immunogenic antigen homologous to hyaluronidase in meningioma. Hum Mol Genet. 1998;7:1859–72.

    CAS  PubMed  Google Scholar 

  • Hogan A, Heyner S, Charron MJ, Copeland NG, Gilbert DJ, Jenkins NA, Thorens B, Schultz GA. Glucose transporter gene expression in early mouse embryos. Development. 1991;113:363–72.

    CAS  PubMed  Google Scholar 

  • Holt GD, Hart GW. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem. 1986;261:8049–57.

    CAS  PubMed  Google Scholar 

  • Horal M, Zhang Z, Stanton R, Virkamaki A, Loeken MR. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res A Clin Mol Teratol. 2004;70:519–27.

    CAS  PubMed  Google Scholar 

  • Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A. 2013;110:5169–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jansen S, Esmaeilpour T, Pantaleon M, Kaye PL. Glucose affects monocarboxylate cotransporter (MCT) 1 expression during mouse preimplantation development. Reproduction. 2006;131:469–79.

    CAS  PubMed  Google Scholar 

  • Jansen S, Cashman K, Thompson JG, Pantaleon M, Kaye PL. Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos. Reproduction. 2009;138:493–505.

    CAS  PubMed  Google Scholar 

  • Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol. 2004;11:1001–7.

    CAS  PubMed  Google Scholar 

  • Kafer GR, Kaye PL, Pantaleon M, Moser RJ, Lehnert SA. In vitro manipulation of mammalian preimplantation embryos can alter transcript abundance of histone variants and associated factors. Cell Reprogram. 2011;13:391–401.

    CAS  PubMed  Google Scholar 

  • Kaye PL. Preimplantation growth factor physiology. Rev Reprod. 1997;2:121–7.

    CAS  PubMed  Google Scholar 

  • Kaye PL, Gardner HG. Preimplantation access to maternal insulin and albumin increases fetal growth rate in mice. Hum Reprod. 1999;14:3052–9.

    CAS  PubMed  Google Scholar 

  • Keembiyehetty CN, Krzeslak A, Love DC, Hanover JA. A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. J Cell Sci. 2011;124:2851–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly WG, Dahmus ME, Hart GW. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem. 1993;268:10416–24.

    CAS  PubMed  Google Scholar 

  • Kornfeld S, Ginsburg V. The metabolism of glucosamine by tissue culture cells. Exp Cell Res. 1966;41:592–600.

    CAS  PubMed  Google Scholar 

  • Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem. 1999;274:32015–22.

    CAS  PubMed  Google Scholar 

  • Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem. 1997;272:9308–15.

    CAS  PubMed  Google Scholar 

  • Kudlow JE. Post-translational modification by O-GlcNAc: another way to change protein function. J Cell Biochem. 2006;98:1062–75.

    CAS  PubMed  Google Scholar 

  • Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–202.

    CAS  PubMed  Google Scholar 

  • Lane M, Gardner DK. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev. 2005;17:371–8.

    CAS  PubMed  Google Scholar 

  • Lange UC, Schneider R. What an epigenome remembers. Bioessays. 2010;32:659–68.

    CAS  PubMed  Google Scholar 

  • Lawitts JA, Biggers JD. Overcoming the 2-cell block by modifying standard components in a mouse embryo culture medium. Biol Reprod. 1991;45:245–51.

    CAS  PubMed  Google Scholar 

  • Lazarus BD, Love DC, Hanover JA. Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology. 2006;16:415–21. Epub 2006 Jan 23.

    CAS  PubMed  Google Scholar 

  • Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1:63–72.

    CAS  PubMed  Google Scholar 

  • Leese HJ, Barton AM. Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil. 1984;72:9–13.

    CAS  PubMed  Google Scholar 

  • Leppens-Luisier G, Sakkas D. Development, glycolytic activity, and viability of preimplantation mouse embryos subjected to different periods of glucose starvation. Biol Reprod. 1997;56:589–96.

    CAS  PubMed  Google Scholar 

  • Lewis AM, Kaye PL. Characterization of glutamine uptake in mouse two-cell embryos and blastocysts. J Reprod Fertil. 1992;95:221–9.

    CAS  PubMed  Google Scholar 

  • Li Y, Chandrakanthan V, Day ML, O’Neill C. Direct evidence for the action of phosphatidylinositol (3,4,5)-trisphosphate-mediated signal transduction in the 2-cell mouse embryo. Biol Reprod. 2007;77:813–21.

    Google Scholar 

  • Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol. 2010;21:646–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem. 2000;275:10983–8.

    CAS  PubMed  Google Scholar 

  • Lubas WA, Frank DW, Krause M, Hanover JA. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem. 1997;272:9316–24.

    CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    CAS  PubMed  Google Scholar 

  • Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991;266:4706–12.

    CAS  PubMed  Google Scholar 

  • Martin KL, Hardy K, Winston RM, Leese HJ. Activity of enzymes of energy metabolism in single human preimplantation embryos. J Reprod Fertil. 1993;99:259–66.

    CAS  PubMed  Google Scholar 

  • Martin KL, Leese HJ. Role of glucose in mouse preimplantation embryo development. Mol Reprod Dev. 1995;40:436–43.

    CAS  PubMed  Google Scholar 

  • McCue K, Pantaleon M, Kaye PL. Proteasomal activity during mouse preimplantation development. Reprod Fertil Dev. 2008;228(20):28–28.

    Google Scholar 

  • O’Donnell N, Zachara NE, Hart GW, Marth JD. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol. 2004;24:1680–90.

    PubMed Central  PubMed  Google Scholar 

  • O’Fallon JV, Wright RW Jr. Quantitative determination of the pentose phosphate pathway in preimplantation mouse embryos. Biol Reprod. 1986;34:58–64.

    PubMed  Google Scholar 

  • O’Neill C, Li Y, Jin XL 2012. Survival signaling in the preimplantation embryo. Theriogenology. 77:773–84. doi:10.1016/j.theriogenology.2011.12.016.

    PubMed  Google Scholar 

  • Pantaleon M, Kaye PL. IGF-I and insulin regulate glucose transport in mouse blastocysts via IGF-I receptor. Mol Reprod Dev. 1996;44:71–6.

    CAS  PubMed  Google Scholar 

  • Pantaleon M, Kaye PL. Glucose transporters in preimplantation development. Rev Reprod. 1998;3:77–81.

    CAS  PubMed  Google Scholar 

  • Pantaleon M, Harvey MB, Pascoe WS, James DE, Kaye PL. Glucose transporter GLUT3: ontogeny, targeting, and role in the mouse blastocyst. Proc Natl Acad Sci U S A. 1997;94:3795–800.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pantaleon M, Ryan JP, Gil M, Kaye PL. An unusual subcellular localization of GLUT1 and link with metabolism in oocytes and preimplantation mouse embryos. Biol Reprod. 2001a;64:1247–54.

    CAS  PubMed  Google Scholar 

  • Pantaleon M, Scott J, Kaye PL. Glucose signals through the hexosamine biosynthetic pathway in mouse preimplantation embryos. Proceedings of the 32nd Annual Conference, Abstract no. 42. Society for Reproductive Biology, 2001b. Gold Coast, Qld, Australia.

    Google Scholar 

  • Pantaleon M, Scott J, Kaye PL. Nutrient sensing by the early mouse embryo: hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod. 2008;78:595–600.

    CAS  PubMed  Google Scholar 

  • Pantaleon M, Tan HY, Kafer GR, Kaye PL. Toxic effects of hyperglycemia are mediated by the hexosamine signaling pathway and o-linked glycosylation in early mouse embryos. Biol Reprod. 2010;82:751–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, De La Cruz CC, Otte AP, Panning B, Zhang Y. Role of histone H3 lysine 27 methylation in X inactivation. Science. 2003;300:131–5. Epub 2003 Mar 20.

    CAS  PubMed  Google Scholar 

  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–32.

    CAS  PubMed  Google Scholar 

  • Riley JK, Carayannopoulos MO, Wyman AH, Chi M, Moley KH. Phosphatidylinositol 3-kinase activity is critical for glucose metabolism and embryo survival in murine blastocysts. J Biol Chem. 2006;281:6010–9. Epub 2005 Nov 4.

    CAS  PubMed  Google Scholar 

  • Ryu IH, Do SI. Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem Biophys Res Commun. 2011;408:52–7.

    CAS  PubMed  Google Scholar 

  • Sakabe K, Hart GW. O-GlcNAc transferase regulates mitotic chromatin dynamics. J Biol Chem. 2010;285:34460–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakabe K, Wang Z, Hart GW. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A. 2010;107:19915–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schelbach CJ, Kind KL, Lane M, Thompson JG. Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes. Reprod Fertil Dev. 2010;22:771–9.

    CAS  PubMed  Google Scholar 

  • Schelbach CJ, Robker RL, Bennett BD, Gauld AD, Thompson JG, Kind KL. Altered pregnancy outcomes in mice following treatment with the hyperglycaemia mimetic, glucosamine, during the periconception period. Reprod Fertil Dev. 2013;25:405–16.

    CAS  PubMed  Google Scholar 

  • Schini SA, Bavister BD. Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol Reprod. 1988;39:1183–92.

    CAS  PubMed  Google Scholar 

  • Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays. 1993;15:531–8.

    CAS  PubMed  Google Scholar 

  • Scott L, Whittingham DG. Influence of genetic background and media components on the development of mouse embryos in vitro. Mol Reprod Dev. 1996;43:336–46.

    CAS  PubMed  Google Scholar 

  • Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110330. doi:10.1098/rstb.2011.0330.

    PubMed Central  PubMed  Google Scholar 

  • Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci U S A. 2000;97:5735–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.

    CAS  PubMed  Google Scholar 

  • Surani MA. Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation mouse embryos: compaction and trophoblast adhesion. Cell. 1979;18:217–27.

    CAS  PubMed  Google Scholar 

  • Sutton-Mcdowall ML, Gilchrist RB, Thompson JG. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction. 2004;128:313–9.

    CAS  PubMed  Google Scholar 

  • Sutton-Mcdowall ML, Mitchell M, Cetica P, Dalvit G, Pantaleon M, Lane M, Gilchrist RB, Thompson JG. Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence. Biol Reprod. 2006;74:881–8.

    CAS  PubMed  Google Scholar 

  • Thompson JG, Simpson AC, Pugh PA, Tervit HR. Requirement for glucose during in vitro culture of sheep preimplantation embryos. Mol Reprod Dev. 1992;31:253–7.

    CAS  PubMed  Google Scholar 

  • Traxinger RR, Marshall S. Coordinated regulation of glutamine: fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem. 1991;266:10148–54.

    CAS  PubMed  Google Scholar 

  • Tsai JH, Schulte M, O’Neill K, Chi MM, Frolova AI, Moley KH. Glucosamine inhibits decidualization of human endometrial stromal cells and decreases litter sizes in mice. Biol Reprod. 2013;89:16.

    PubMed  Google Scholar 

  • Wales RG, Hunter J. Participation of glucose in the synthesis of glycoproteins in preimplantation mouse embryos. Reprod Fertil Dev. 1990;2:35–50.

    CAS  PubMed  Google Scholar 

  • Wales RG, Whittingham DG. A comparison of the uptake and utilisation of lactate and pyruvate in one- and two-cell mouse embryos. Biochim Biophys Acta. 1967;148:703.

    CAS  Google Scholar 

  • Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature. 1998;393:684–8.

    CAS  PubMed  Google Scholar 

  • Wang J, Mager J, Chen Y, Schneider E, Cross JC, Nagy A, Magnuson T. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat Genet. 2001;28:371–5.

    CAS  PubMed  Google Scholar 

  • Watkins AJ, Papenbrock T, Fleming TP. The preimplantation embryo: handle with care. Semin Reprod Med. 2008;26:175–85.

    CAS  PubMed  Google Scholar 

  • Watson AJ, Barcroft LC. Regulation of blastocyst formation. Front Biosci. 2001;6:D708–30.

    CAS  PubMed  Google Scholar 

  • Wells L, Hart GW. O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett. 2003;546:154–8.

    CAS  PubMed  Google Scholar 

  • Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science. 2001;291:2376–8.

    CAS  PubMed  Google Scholar 

  • West JD, Flockhart JH, Angell RR, Hillier SG, Thatcher SS, Glasier AF, Rodger MW, Baird DT. Glucose phosphate isomerase activity in mouse and human eggs and pre-embryos. Hum Reprod. 1989;4:82–5.

    CAS  PubMed  Google Scholar 

  • Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem. 2010;285:5204–11. doi:10.1074/jbc.M109.077818. Epub 2009 Dec 17.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whisenhunt TR, Yang X, Bowe DB, Paterson AJ, Van Tine BA, Kudlow JE. Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology. 2006;16:551–63. Epub 2006 Feb 27.

    CAS  PubMed  Google Scholar 

  • Whitten WK. Culture of tubal mouse ova. Nature. 1956;177:96.

    CAS  PubMed  Google Scholar 

  • Wu G, Haynes TE, Li H, Yan W, Meininger CJ. Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J. 2001;353:245–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Zhang F, Kudlow JE. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell. 2002;110:69–80.

    CAS  PubMed  Google Scholar 

  • Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006;8:1074–83.

    CAS  PubMed  Google Scholar 

  • Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature. 2008;451:964–9. doi:10.1038/nature06668.

    CAS  PubMed  Google Scholar 

  • Yang YR, Song M, Lee H, Jeon Y, Choi EJ, Jang HJ, Moon HY, Byun HY, Kim EK, Kim DH, Lee MN, Koh A, Ghim J, Choi JH, Lee-Kwon W, Kim KT, Ryu SH, Suh PG. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell. 2012;11:439–48.

    CAS  PubMed  Google Scholar 

  • Zachara NE, Hart GW. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta. 2004;1673:13–28.

    CAS  PubMed  Google Scholar 

  • Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta. 2006;1761:599–617.

    CAS  PubMed  Google Scholar 

  • Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem. 2004;279:30133–42.

    CAS  PubMed  Google Scholar 

  • Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell. 2003;115:715–25.

    CAS  PubMed  Google Scholar 

  • Zhang S, Roche K, Nasheuer HP, Lowndes NF. Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem. 2011;286:37483–95. doi:10.1074/jbc.M111.284885. Epub 2011 Sep 6.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Pantaleon Bsc (Hons IA) PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pantaleon, M. (2015). The Role of Hexosamine Biosynthesis and Signaling in Early Development. In: Leese, H., Brison, D. (eds) Cell Signaling During Mammalian Early Embryo Development. Advances in Experimental Medicine and Biology, vol 843. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2480-6_3

Download citation

Publish with us

Policies and ethics