Skip to main content

Hamel’s Formalism and Variational Integrators

  • Chapter
Geometry, Mechanics, and Dynamics

Part of the book series: Fields Institute Communications ((FIC,volume 73))

Abstract

Hamel’s formalism is a representation of Lagrangian mechanics obtained by measuring the velocity components relative to a frame that generically is not induced by configuration coordinates. The use of this formalism often leads to a simpler representation of dynamics. Utilizing the variational discretization approach, this paper develops a discrete Hamel’s formalism with applications to nonholonomic integrators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If Q is a Lie group, this formula is derived in Bloch, Krishnaprasad, Marsden, and Ratiu\ [4].

  2. 2.

    Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.

  3. 3.

    For a noncommutative symmetry group, L depends on \((s,\dot{s})\) through the combination \(s^{-1}\dot{s}\).

  4. 4.

    The general noncommutative setting is not studied in this paper and will be the subject of a future publication.

  5. 5.

    The stability analysis of relative equilibria of nonholonomic systems has a long history, starting form the results of Walker [38] and Routh [36]; see [39] for some of this history and for the energy-momentum method for nonholonomic systems.

  6. 6.

    Equations (34) were derived in [25, 26] without the use of the discrete Hamel formalism.

  7. 7.

    See [33, 37], and [2] for the Suslov top.

References

  1. Ball, K., Zenkov, D.V., Bloch, A.M.: Variational structures for Hamel’s equations and stabilization. In: Proceedings of the 4th IFAC, pp. 178–183 (2012)

    Google Scholar 

  2. Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics, vol. 24. Springer, New York (2003)

    Google Scholar 

  3. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and double bracket dissipation. Commun. Math. Phys. 175, 1–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. Int. J. 24(2), 187–222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bobenko, A.I., Suris, Yu.B.: Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products. Lett. Math. Phys. 49, 79–93 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bobenko, A.I., Suris, Yu.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Commun. Math. Phys. 204(1), 147–188 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bou-Rabee, N., Marsden, J.E.: Hamilton–Pontryagin integrators on Lie groups part I: Introduction and structure-preserving properties. Found. Comput. Math. 9(2), 197–219 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chaplygin, S.A.: On the motion of a heavy body of revolution on a horizontal plane. Phys. Sect. Imperial Soc. Friends Phys. Anthropol. Ethnograph. 9, 10–16 (1897) (in Russian)

    Google Scholar 

  10. Chetaev, N.G.: On Gauss’ principle. Izv. Fiz-Mat. Obsc. Kazan. Univ. Ser. 3 6, 68–71 (1932–1933) (in Russian)

    Google Scholar 

  11. Chetaev, N.G.: Theoretical Mechanics. Springer, New York (1989)

    MATH  Google Scholar 

  12. Cortés, J., Martínez, S.: Nonholonomic integrators. Nonlinearity 14, 1365–1392 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Euler, L.: Decouverte d’un nouveau principe de Mecanique. Mémoires de l’académie des sciences de Berlin 6, 185–217 (1752)

    Google Scholar 

  14. Fedorov, Yu.N., Zenkov, D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 2211–2241 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fedorov, Yu.N., Zenkov, D.V.: Dynamics of the discrete Chaplygin sleigh. Discrete Continuous Dyn. Syst. (extended volume), 258–267 (2005)

    Google Scholar 

  16. Hamel, G.: Die Lagrange–Eulersche Gleichungen der Mechanik. Z. Math. Phys. 50, 1–57 (1904)

    MATH  Google Scholar 

  17. Hamilton, W.R.: On a general method in dynamics, part I. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)

    Article  Google Scholar 

  18. Hamilton, W.R.: On a general method in dynamics, part II. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835)

    Article  Google Scholar 

  19. Iglesias, D., Marrero, J.C., Martín de Diego, D., Martínez, E.: Discrete nonholonomic Lagrangian systems on Lie groupoids. J. Nonlinear Sci. 18(3), 221–276 (2008)

    Google Scholar 

  20. Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Math. Eng. 49(10), 1295–1325 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Karapetyan, A.V.: On the problem of steady motions of nonholonomic systems. J. Appl. Math. Mech. 44, 418–426 (1980)

    Article  Google Scholar 

  22. Kobilarov, M., Marsden, J.E., Sukhatme, G.S.: Geometric discretization of nonholonomic systems with symmetries. Discrete Continuous Dyn. Syst. Ser. S 3(1), 61–84 (2010)

    MATH  MathSciNet  Google Scholar 

  23. Kozlov, V.V.: The problem of realizing constraints in dynamics. J. Appl. Math. Mech. 56(4), 594–600 (1992)

    Article  MathSciNet  Google Scholar 

  24. Lagrange, J.L.: Mécanique Analytique. Chez la Veuve Desaint (1788)

    Google Scholar 

  25. Lynch, C., Zenkov, D.: Stability of stationary motions of discrete-time nonholonomic systems. In: Kozlov, V.V., Vassilyev, S.N., Karapetyan, A.V., Krasovskiy, N.N., Tkhai, V.N., Chernousko, F.L. (eds.) Problems of Analytical Mechanics and Stability Theory. Collection of Papers Dedicated to the Memory of Academician Valentin V. Rumyantsev, pp. 259–271. Fizmatlit, Moscow (2009) (in Russian)

    Google Scholar 

  26. Lynch, C., Zenkov, D.V.: Stability of relative equilibria of discrete nonholonomic systems with semidirect symmetry. Preprint (2010)

    Google Scholar 

  27. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)

    Google Scholar 

  28. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Marsden, J.E., Pekarsky, S., Shkoller, S.: Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity 12, 1647–1662 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Maruskin, J.M., Bloch, A.M., Marsden, J.E., Zenkov, D.V.: A fiber bundle approach to the transpositional relations in nonholonomic mechanics. J. Nonlinear Sci. 22(4), 431–461 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moser, J., Veselov, A.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139(2), 217–243 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. AMS, Providence, RI (1972)

    Google Scholar 

  34. Peng, Y., Huynh, S., Zenkov, D.V., Bloch, A.M.: Controlled Lagrangians and stabilization of discrete spacecraft with rotor. Proc. CDC 51, 1285–1290 (2012)

    Google Scholar 

  35. Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. CR Acad. Sci. 132, 369–371 (1901)

    MATH  Google Scholar 

  36. Routh, E.J.: Treatise on the Dynamics of a System of Rigid Bodies. MacMillan, London (1860)

    Google Scholar 

  37. Suslov, G.K.: Theoretical Mechanics, 3rd edn. GITTL, Moscow–Leningrad (1946) (in Russian)

    Google Scholar 

  38. Walker, G.T.: On a dynamical top. Q. J. Pure Appl. Math. 28, 175–184 (1896)

    MATH  Google Scholar 

  39. Zenkov, D.V., Bloch, A.M., Marsden, J.E.: The energy-momentum method for the stability of nonholonomic systems. Dyn. Stab. Syst. 13, 128–166 (1998)

    Article  MathSciNet  Google Scholar 

  40. Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s formalism and variational integrators on a sphere. Proc. CDC 51, 7504–7510 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jerry Marsden for his inspiration and helpful discussions in the beginning of this work, and the reviewers for useful remarks. The research of DVZ was partially supported by NSF grants DMS-0604108, DMS-0908995 and DMS-1211454. The research of KRB was partially supported by NSF grants DMS-0604108 and DMS-0908995. DVZ would like to acknowledge support and hospitality of Mathematisches Forschungsinstitut Oberwolfach, the Fields Institute, and the Beijing Institute of Technology, where a part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Zenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ball, K.R., Zenkov, D.V. (2015). Hamel’s Formalism and Variational Integrators. In: Chang, D., Holm, D., Patrick, G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Fields Institute Communications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2441-7_20

Download citation

Publish with us

Policies and ethics