Skip to main content

Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms

  • Chapter
Book cover Geometry, Mechanics, and Dynamics

Part of the book series: Fields Institute Communications ((FIC,volume 73))

Abstract

In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electrodynamics, combining the techniques of variational integrators and discrete differential forms. This leads to a general family of variational, multisymplectic numerical methods for solving Maxwell’s equations that automatically preserve key symmetries and invariants. In doing so, we show that Yee’s finite-difference time-domain (FDTD) scheme and its variants are multisymplectic and derive from a discrete Lagrangian variational principle. We also generalize the Yee scheme to unstructured meshes, not just in space but in 4-dimensional spacetime, which relaxes the need to take uniform time steps or even to have a preferred time coordinate. Finally, as an example of the type of methods that can be developed within this general framework, we introduce a new asynchronous variational integrator (AVI) for solving Maxwell’s equations. These results are illustrated with some prototype simulations that show excellent numerical behavior and absence of spurious modes, even for an irregular mesh with asynchronous time stepping.

In memory of Jerry, our colleague, mentor, and friend.

— A.S., Y.T., and M.D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006). doi:10.1017/S0962492906210018

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (N.S.) 47(2), 281–354 (2010). doi:10.1090/S0273-0979-10-01278-4

    Google Scholar 

  3. Auchmann, B., Kurz, S.: A geometrically defined discrete Hodge operator on simplicial cells. IEEE Trans. Magn. 42(4), 643–646 (2006). doi:10.1109/TMAG.2006.870932

    Article  Google Scholar 

  4. Bell, N., Hirani, A.N.: PyDEC: software and algorithms for discretization of exterior calculus. ACM Trans. Math. Softw. 39(1), 3:1–3:41 (2012). doi:10.1145/2382585.2382588

    Google Scholar 

  5. Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic, San Diego (1998)

    MATH  Google Scholar 

  6. Bossavit, A., Kettunen, L.: Yee-like schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Numer. Modell. 12(1–2), 129–142 (1999). doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G

    Google Scholar 

  7. Bossavit, A., Kettunen, L.: Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. IEEE Trans. Magn. 36(4), 861–867 (2000). doi:10.1109/20.877580

    Article  Google Scholar 

  8. Clemens, M., Weiland, T.: Magnetic field simulation using conformal FIT formulations. IEEE Trans. Magn. 38(2), 389–392 (2002). doi:10.1109/20.996104

    Article  Google Scholar 

  9. Desbrun, M., Hirani, A.N., Marsden, J.E.: Discrete exterior calculus for variational problems in computer vision and graphics. In: Proceedings of the 42nd IEEE Conference on Decision and Control (CDC), vol. 5, pp. 4902–4907. IEEE Press, Washington (2003). doi:10.1109/CDC.2003.1272393

    Google Scholar 

  10. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: Discrete Differential Geometry, Oberwolfach Semin., vol. 38, pp. 287–324. Birkhäuser, Basel (2008). doi:10.1007/978-3-7643-8621-4_16

    Google Scholar 

  11. Elcott, S., Schröder, P.: Building your own DEC at home. In: ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, pp. 55–59. ACM, New York (2006). doi:10.1145/1185657.1185666

    Google Scholar 

  12. Erickson, J., Guoy, D., Sullivan, J., Üngör, A.: Building spacetime meshes over arbitrary spatial domains. Eng. Comput. 20(4), 342–353 (2005). doi:10.1007/s00366-005-0303-0

    Article  Google Scholar 

  13. Gawlik, E.S., Mullen, P., Pavlov, D., Marsden, J.E., Desbrun, M.: Geometric, variational discretization of continuum theories. Physica D 240(21), 1724–1760 (2011). doi:10.1016/j.physd.2011.07.011

    Article  MATH  MathSciNet  Google Scholar 

  14. Gotay, M.J., Isenberg, J., Marsden, J.E.: Momentum maps and classical relativistic fields. Part 1: covariant field theory (1997). arXiv:physics/9801019

    Google Scholar 

  15. Gotay, M.J., Isenberg, J., Marsden, J.E.: Momentum maps and classical relativistic fields. Part II: canonical analysis of field theories (2004). arXiv:math-ph/0411032

    Google Scholar 

  16. Gross, P.W., Kotiuga, P.R.: Electromagnetic Theory and Computation: A Topological Approach. Mathematical Sciences Research Institute Publications, vol. 48. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  17. Haber, E., Ascher, U.M.: Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 22(6), 1943–1961 (2001). doi:10.1137/S1064827599360741

    Article  MATH  MathSciNet  Google Scholar 

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31, 2nd edn. Springer, Berlin (2006). doi:10.1007/3-540-30666-8

    Google Scholar 

  19. Harrison, J.: Isomorphisms of differential forms and cochains. J. Geom. Anal. 8(5), 797–807 (1998). doi:10.1007/BF02922671. Dedicated to the memory of Fred Almgren

    Google Scholar 

  20. Harrison, J.: Geometric Hodge star operator with applications to the theorems of Gauss and Green. Math. Proc. Camb. Philos. Soc. 140(1), 135–155 (2006). doi:10.1017/S0305004105008716

    Article  MATH  Google Scholar 

  21. Harrison, J., Pugh, H.: Topological aspects of differential chains. J. Geom. Anal. 22(3), 685–690 (2012). doi:10.1007/s12220-010-9210-8

    Article  MATH  MathSciNet  Google Scholar 

  22. Hiptmair, R.: Discrete Hodge operators. Numer. Math. 90(2), 265–289 (2001). doi:10.1007/s002110100295

    Article  MATH  MathSciNet  Google Scholar 

  23. Hirani, A.N.: Discrete exterior calculus. Ph.D. thesis, California Institute of Technology (2003). http://resolver.caltech.edu/CaltechETD:etd-05202003-095403

  24. Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12(3), 263–293 (2012). doi:10.1007/s10208-012-9119-7

    Article  MATH  MathSciNet  Google Scholar 

  25. Kale, K.G., Lew, A.J.: Parallel asynchronous variational integrators. Int. J. Numer. Methods Eng. 70(3), 291–321 (2007). doi:10.1002/nme.1880

    Article  MATH  MathSciNet  Google Scholar 

  26. Leok, M.: Foundations of computational geometric mechanics. Ph.D. thesis, California Institute of Technology (2004). http://resolver.caltech.edu/CaltechETD:etd-03022004-000251

  27. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  28. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Asynchronous variational integrators. Arch. Ration. Mech. Anal. 167(2), 85–146 (2003). doi:10.1007/s00205-002-0212-y

    Article  MATH  MathSciNet  Google Scholar 

  29. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Variational time integrators. Int. J. Numer. Methods Eng. 60(1), 153–212 (2004). doi:10.1002/nme.958

    Article  MATH  MathSciNet  Google Scholar 

  30. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001). doi:10.1017/S096249290100006X

    Article  MATH  MathSciNet  Google Scholar 

  31. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199(2), 351–395 (1998). doi:10.1007/s002200050505

    Article  MATH  MathSciNet  Google Scholar 

  32. Marsden, J.E., Pekarsky, S., Shkoller, S., West, M.: Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38(3-4), 253–284 (2001). doi:10.1016/S0393-0440(00)00066-8

    Article  MATH  MathSciNet  Google Scholar 

  33. Mullen, P., Memari, P., de Goes, F., Desbrun, M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph. 30(4), 103:1–103:12 (2011). doi:10.1145/2010324.1964998

    Google Scholar 

  34. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35(3), 315–341 (1980). doi:10.1007/BF01396415

    Article  MATH  MathSciNet  Google Scholar 

  35. Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97(3), 493–535 (2004). doi:10.1007/s00211-003-0488-3

    Article  MATH  MathSciNet  Google Scholar 

  36. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  37. Patrick, G.W.: Geometric classical field theory. Personal communication (2004)

    Google Scholar 

  38. Pavlov, D., Mullen, P., Tong, Y., Kanso, E., Marsden, J.E., Desbrun, M.: Structure-preserving discretization of incompressible fluids. Physica D 240(6), 443–458 (2011). doi:10.1016/j.physd.2010.10.012

    Article  MATH  MathSciNet  Google Scholar 

  39. Rylander, T., Ingelström, P., Bondeson, A.: Computational Electromagnetics. Texts in Applied Mathematics, vol. 51, 2nd edn. Springer, New York (2013). doi:10.1007/978-1-4614-5351-2

    Google Scholar 

  40. Stern, A.: Geometric discretization of Lagrangian mechanics and field theories. Ph.D. thesis, California Institute of Technology (2009). http://resolver.caltech.edu/CaltechETD:etd-12312008-173851

  41. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House Inc., Boston (2005)

    Google Scholar 

  42. Tarhasaari, T., Kettunen, L., Bossavit, A.: Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques. IEEE Trans. Magn. 35(3), 1494–1497 (1999). doi:10.1109/20.767250

    Article  Google Scholar 

  43. Thite, S.: Spacetime meshing for discontinuous Galerkin methods. Ph.D. thesis, University of Illinois at Urbana-Champaign (2005). http://hdl.handle.net/2142/11078

  44. Thite, S.: Adaptive spacetime meshing for discontinuous Galerkin methods. Comput. Geom. 42(1), 20–44 (2009). doi:10.1016/j.comgeo.2008.07.003

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, K., Weiwei, Tong, Y., Desbrun, M., Schröder, P.: Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25(3), 1041–1048 (2006). doi:10.1145/1141911.1141991

    Google Scholar 

  46. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  47. Wise, D.K.: p-form electromagnetism on discrete spacetimes. Class. Quantum Gravity 23(17), 5129–5176 (2006). doi:10.1088/0264-9381/23/17/004

    Google Scholar 

  48. Yee, K.S.: Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Ant. Prop. 14(3), 302–307 (1966). doi:10.1109/TAP.1966.1138693

    Article  MATH  Google Scholar 

  49. Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics. II. Variational structures. J. Geom. Phys. 57(1), 209–250 (2006). doi:10.1016/j.geomphys.2006.02.012

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank several people for their inspiration and suggestions. First of all, Alain Bossavit for suggesting many years ago that we take the present DEC approach to computational electrodynamics, and for his excellent lectures at Caltech on the subject. Second, Michael Ortiz and Eva Kanso for their ongoing interactions on related topics and suggestions. We also thank Doug Arnold, Uri Ascher, Robert Kotiuga, Melvin Leok, Adrian Lew, and Matt West for their feedback and encouragement. In addition, the 3-D AVI simulations shown in Figure 11 were programmed and implemented by Patrick Xia, as part of a Summer Undergraduate Research Fellowship at Caltech supervised by M.D. and A.S.

A.S. was partially supported by a Gordon and Betty Moore Foundation fellowship at Caltech, and by NSF grant CCF-0528101. Y.T. and M.D. were partially supported by NSF grants CCR-0133983 and DMS-0453145 and DOE contract DE-FG02-04ER25657. J.E.M. was partially supported by NSF grant CCF-0528101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stern, A., Tong, Y., Desbrun, M., Marsden, J.E. (2015). Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms. In: Chang, D., Holm, D., Patrick, G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Fields Institute Communications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2441-7_19

Download citation

Publish with us

Policies and ethics