Skip to main content

On the Completeness of Trajectories for Some Mechanical Systems

  • Chapter
Geometry, Mechanics, and Dynamics

Part of the book series: Fields Institute Communications ((FIC,volume 73))

Abstract

The classical tools which ensure the completeness of both, vector fields and second order differential equations for mechanical systems, are revisited. Possible extensions in three directions are discussed: infinite dimensional Banach (and Hilbert) manifolds, Finsler metrics and pseudo-Riemannian spaces, the latter including links with some relativistic spacetimes. Special emphasis is taken in the cleaning up of known techniques, the statement of open questions and the exploration of prospective frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, our Banach manifolds will be always regular and, so, some difficulties pointed out by Palais in [53] (see Sect. 2 including the Appendix therein), will not apply. The central role of paracompactness from the topological viewpoint is stressed in Figure 1. Notice that, as a difference with the finite dimensional case, second countability does not imply paracompactness (see for example [46], [42, Sect. 27.6] or [53]).

  2. 2.

    By the same reason that neither is the absolute value function on \(\mathbb{R}\). Moreover, at least in the finite-dimensional case, the square of a norm is smooth at 0 if and only if the norm comes from a scalar product [67, Prop. 4.1].

  3. 3.

    Consistently, paracompactness can be deduced from the hypothesis of metrizability (or even just from pseudo-metrizability, see [2, Lemma 5.515]).

  4. 4.

    This can be rephrased as a bound of the spectrum of S, see [44, Th. 3.10].

  5. 5.

    These improvements can be also extended to other contexts, as the completeness of certain Finsler metrics in [21].

  6. 6.

    According to Palais [52, Defn. 4.1] (and taking into account Moore’s modification [49, p. 50]), a pseudo-gradient for a function V on an open subset U is a locally Lipschitz vector field X such that \(\epsilon ^{2}F_{p}(X_{p})^{2} \leq \parallel \mathit{dV}_{p} \parallel \leq \epsilon ^{-2}\mathit{dV}_{p}(X_{p})\) for all p ∈ U.

  7. 7.

    However, standard Finsler metrics are usually allowed to be non-reversible, see Remark 8.

  8. 8.

    Explicit examples by Kundt [39], Geroch [32, p. 531] and Beem [5] showed the full logical independence among spacelike, timelike and lightlike geodesic completeness.

  9. 9.

    This case is interesting also for the classification of flat compact Lorentzian manifolds, which are called then standard, see [38].

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley Publishing, Boston (1987)

    Google Scholar 

  2. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis and Applications, 2nd edn. Springer, New York (1988)

    Book  MATH  Google Scholar 

  3. Atkin, C.J.: Geodesic and metric completeness in infinite dimensions. Hokkaido Math. J. 26, 1–61 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)

    Google Scholar 

  5. Beem, J.K.: Some examples of incomplete space-times. Gen. Relativ. Gravitation 7, 501–509 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Monographs Textbooks Pure Applied Mathematics, vol. 202. Dekker, New York (1996)

    Google Scholar 

  7. Bičák, J.: Selected solutions of Einstein’s field equations: their role in general relativity and astrophysics. In: Schmidt, B.G. (ed.) Einstein’s Field Equations and Their Physical Implications (Selected Essays in Honour of Jrgen Ehlers). Springer, Berlin (2000)

    Google Scholar 

  8. Blanco, O.F., Sánchez, M., Senovilla, J.M.M.: Structure of second-order symmetric Lorentzian manifolds. J. Eur. Math. Soc. 15, 595–634 (2013)

    Article  MATH  Google Scholar 

  9. Bonic, R., Frampton, J.: Smooth functions on Banach manifolds. J. Math. Mech. 15, 877–898 (1966)

    MATH  MathSciNet  Google Scholar 

  10. Bromberg, S., Medina, A.: Geodesically complete Lorentzian metrics on some homogeneous 3 manifolds. Symmetry Integrability Geom. Methods Appl. 4, Paper 088, 13 pp. (2008)

    Google Scholar 

  11. Brunella, M.: Complete polynomial vector fields on the complex plane. Topology 43(2), 433–445 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bustinduy, A., Giraldo, L.: Completeness is determined by any non-algebraic trajectory. Adv. Math. 231(2), 664–679 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57(4), 1279–1291 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Candela, A.M., Sánchez, M.: Geodesics in semi-Riemannian manifolds: geometric properties and variational tools. In: Alekseevsky, D.V., Baum, H. (eds.) Recent Developments in Pseudo-Riemannian Geometry, Special Volume in the ESI Series on Mathematics and Physics, pp. 359–418. EMS Publishing House, Zürich (2008)

    Chapter  Google Scholar 

  15. Candela, A., Flores, J.L., Sánchez, M.: On general plane fronted waves. Geodesics. Gen. Relativ. Gravitation 35, 631–649 (2003)

    Article  MATH  Google Scholar 

  16. Candela, A.M., Romero, A., Sánchez, M.: Remarks on the completeness of plane waves and the trajectories of accelerated particles in Riemannian manifolds. In: Proceedings of International Meeting on Differential Geometry, pp. 27–38. University of Córdoba, Córdoba (2012)

    Google Scholar 

  17. Candela, A.M., Romero, A., Sánchez, M.: Completeness of the trajectories of particles coupled to a general force field. Arch. Ration. Mech. Anal. 208(1), 255–274 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Candela, A.M., Romero, A., Sánchez, M.: Completeness of relativistic particles under stationary magnetic fields. In: Proceedings of XXI International Fall Workshop on Geometry and Physics. Int. J. Geom. Methods Mod. Phys. 10(8), 1360007, 8 pp. (2013)

    Google Scholar 

  19. Carrière, Y.: Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95, 615–628 (1989)

    Article  MATH  Google Scholar 

  20. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  21. Dirmeier, A., Plaue, M., Scherfner, M.: Growth conditions, Riemannian completeness and Lorentzian causality. J. Geom. Phys. 62(3), 604–612 (2012). Erratum ibidem (2013)

    Google Scholar 

  22. Dumitrescu, S., Zeghib, A.: Géométries lorentziennes de dimension 3: classification et complétude. Geom. Dedicata 149, 243–273 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ebin, D.G.: Completeness of Hamiltonian vector fields. Proc. Am. Math. Soc. 26, 632–634 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ehlers, J., Kundt, K.: Exact solutions of the gravitational field equations. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  25. Ekeland, I.: The Hopf–Rinow theorem in infinite dimension. J. Differ. Geom. 13, 287–30 (1978)

    MATH  MathSciNet  Google Scholar 

  26. Flores, J.L., Sánchez, M.: Causality and conjugate points in general plane waves. Class. Quantum Gravity 20(11), 2275–2291 (2003)

    Article  MATH  Google Scholar 

  27. Flores, J.L., Sánchez, M.: In: Jörg, F., Domenico, G., Perlick, J.W., Volker (Eds.) Analytical and Numerical Approaches to Mathematical Relativity. Springer, Berliin (2006) [ISBN 978-3-540-33484-2]

    Google Scholar 

  28. Flores, J.L., Herrera, J., Sánchez M.: Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds. Memoirs Am. Math. Soc. 226(1064), 76 or, more precisely: vi+76 (2013)

    Google Scholar 

  29. Forstneric, F.: Actions of \((\mathbb{R},+)\) and \((\mathbb{C},+)\) on complex manifolds. Math. Zeitschrift 223, 123–153 (1996)

    MATH  MathSciNet  Google Scholar 

  30. Galloway, G.J., Senovilla J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Class. Quantum Gravity 27(15), 152002, 10 pp. (2010)

    Google Scholar 

  31. Gannon, D.: Singularities in nonsimply connected space-times. J. Math. Phys. 16(12), 2364–2367 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  32. Geroch, R.P.: What is a singularity in general relativity. Ann. Phys. (NY) 48, 526–540 (1970)

    Google Scholar 

  33. Gordon, W.B.: On the completeness of Hamiltonian vector fields. Proc. Am. Math. Soc. 26, 329–331 (1970)

    Article  MATH  Google Scholar 

  34. Hawking, S.W.: The occurrence of singularities in cosmology. III. Causality and singularities. Proc. R. Soc. Lond. A 300, 187–201 (1967)

    Article  MATH  Google Scholar 

  35. Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529–548 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  36. Javaloyes, M.A., Sánchez, M.: An Introduction to Lorentzian Geometry and its Applications. Sao Carlos, Rima (2010). ISBN: 978-85-7656-180-4

    Google Scholar 

  37. Javaloyes, M.A., Sánchez, M.: On the definition and examples of Finsler metrics. Ann. Sc. Norm. Sup. Pisa, Cl. Sci. XIII(5), 813–858 (2014). doi: (arxiv: 1111.5066)

  38. Kamishima, Y.: Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields. J. Differ. Geom. 37(3), 569–601 (1993)

    MATH  MathSciNet  Google Scholar 

  39. Kundt, W.: Note on the completeness of spacetimes. Z. Physik 172, 488–489 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  40. Klingenberg, W.: Riemannian Geometry. de Gruyter Studies in Mathematics, 1. Walter de Gruyter & Co., Berlin (1982)

    Google Scholar 

  41. Klingler, B.: Complétude des variétés lorentziennes à courbure constante. Math. Ann. 306, 353–370 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)

    Google Scholar 

  43. Lafuente López, J.: A geodesic completeness theorem for locally symmetric Lorentz manifolds. Rev. Mat. Univ. Complut. Madrid 1, 101–110 (1988)

    MATH  MathSciNet  Google Scholar 

  44. Lang, S.: Differential and Riemannian Manifolds. Graduate Texts in Mathematics, vol. 160, 3rd edn. Springer, New York (1995)

    Google Scholar 

  45. Leistner, L., Schliebner, D.: Completeness of compact Lorentzian manifolds with special holonomy. Preprint (arxiv in 2013)

    Google Scholar 

  46. Margalef Roig, J., Outerelo Domínguez, E.: Una variedad diferenciable de dimension infinita, separada y no regular. Rev. Matem. Hispanoamericana 42, 51–55 (1982)

    MATH  Google Scholar 

  47. Marsden, J.E.: On completeness of homogeneous pseudo-Riemannian manifolds. Indiana Univ. J. 22, 1065–1066 (1972/73)

    Google Scholar 

  48. Morales Alvarez, P., Sánchez, M.: Myers and Hawking theorems: Geometry for the limits of the Universe, preprint U. Granada (2015)

    Google Scholar 

  49. Moore, J.D.: Introduction to Global Analysis. University of California Santa Barbara (2010). Available at www.math.ucsb.edu/~moore/globalanalysisshort.pdf

  50. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics, vol. 103. Academic, New York (1983)

    Google Scholar 

  51. Palais, R.S.: Morse theory on Hilbert manifolds. Topology 2, 299–340 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  52. Palais, R.S.: Lusternik–Schnirelman theory on Banach manifolds. Topology 5, 115–132 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  53. Palais, R.S.: Critical point theory and the minimax principle. In: Global Analysis (Proc. Sympos. Pure Math., vol. XV, Berkeley, 1968), pp. 185–212. American Mathematical Society, Providence (1970)

    Google Scholar 

  54. Palais, R.S.: When proper maps are closed. Proc. Am. Math. Soc. 24, 835–836 (1970)

    MATH  MathSciNet  Google Scholar 

  55. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  56. Raychaudhuri, A.K.: Relativistic cosmology I. Phys. Rev. 98, 1123–1126 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  57. Romero, A., Sánchez, M.: On completeness of certain families of semi-Riemannian manifolds. Geom. Dedicata 53(1), 103–117 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  58. Romero, A., Sánchez, M.: Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field. Proc. Am. Math. Soc. 123(9), 2831–2833 (1995)

    Article  MATH  Google Scholar 

  59. Sánchez, M.: Structure of Lorentzian tori with a Killing vector field. Trans. Am. Math. Soc. 349(3), 1063–1080 (1997)

    Article  MATH  Google Scholar 

  60. Sánchez, M.: On the geometry of generalized Robertson–Walker spacetimes: geodesics. Gen. Relativ. Gravitation 30(6), 915–932 (1998)

    Article  MATH  Google Scholar 

  61. Sánchez, M.: Cauchy hypersurfaces and global Lorentzian geometry. Publ. RSME 8, 143–163 (2006)

    Google Scholar 

  62. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. T\(\hat{o}\) hoku Math. J. 10, 338–354 (1958)

    Google Scholar 

  63. Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravitation 29(5), 701–848 (1997)

    Google Scholar 

  64. Senovilla, J.M.M.: Second-order symmetric Lorentzian manifolds. I. Characterization and general results. Class. Quantum Gravity 25(24), 245011, 25 pp. (2008)

    Google Scholar 

  65. Shen, Z.: Lectures on Finsler Geometry. World Scientific Publishing, Singapore (2001)

    Book  MATH  Google Scholar 

  66. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012)

    Google Scholar 

  67. Warner, F.W.: The conjugate locus of a Riemannian manifold. Am. J. Math. 87(3), 575–604 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  68. Weinstein, A., Marsden, J.E.: A comparison theorem for Hamiltonian vector fields. Proc. Am. Math. Soc. 26, 629–631 (1970)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Partially supported by Spanish grants with Feder funds P09-FQM-4496 (J. Andalucía) and MTM2013-47828-C2-1-P (Mineco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sánchez, M. (2015). On the Completeness of Trajectories for Some Mechanical Systems. In: Chang, D., Holm, D., Patrick, G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Fields Institute Communications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2441-7_15

Download citation

Publish with us

Policies and ethics