Skip to main content

Keplerian Dynamics on the Heisenberg Group and Elsewhere

  • Chapter
Geometry, Mechanics, and Dynamics

Part of the book series: Fields Institute Communications ((FIC,volume 73))

Abstract

Posing Kepler’s problem of motion around a fixed “sun” requires the geometric mechanician to choose a metric and a Laplacian. The metric provides the kinetic energy. The fundamental solution to the Laplacian (with delta source at the “sun”) provides the potential energy. Posing Kepler’s three laws (with input from Galileo) requires symmetry conditions. The metric space must be homogeneous, isotropic, and admit dilations. Any Riemannian manifold enjoying these three symmetry properties is Euclidean. So if we want a semblance of Kepler’s three laws to hold but also want to leave the Euclidean realm, we are forced out of the realm of Riemannian geometries. The Heisenberg group (a subRiemannian geometry) and lattices provide the simplest examples of metric spaces enjoying a semblance of all three of the Keplerian symmetries. We report success in posing, and solving, the Kepler problem on the Heisenberg group. We report failures in posing the Kepler problem on the rank two lattice and partial success in solving the problem on the integers. We pose a number of questions.

For Jerry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin-Cummings, Reading (1978)

    MATH  Google Scholar 

  2. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2010)

    Google Scholar 

  3. Albouy, A.: Projective dynamics and classical gravitation. arXiv:math-ph/0501026v2 (2005)

    Google Scholar 

  4. Cserti, J.: Application of the lattice Green’s function for calculating the resistance of infinite networks of resistors. Am. J. Phys. 68, 896–906. arXiv:cond-mat/9909120v4 (2000).

    Google Scholar 

  5. Folland, G.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diacu, F., Perez-Chavela, E., Santoprete, M.: The n-body problem in spaces of constant curvature. Part I: relative equilibria. J. Nonlinear Sci. 22, 247–266 (2012)

    MATH  MathSciNet  Google Scholar 

  7. Diacu, F., Perez-Chavela, E., Santoprete, M.: The n-body problem in spaces of constant curvature. Part II: singularities. J. Nonlinear Sci. 22, 267–275 (2012)

    MATH  MathSciNet  Google Scholar 

  8. Diacu, F., Perez-Chavela, E., Santoprete, M.: The n-body problem in spaces of constant curvature. arXiv:0807.1747v6 [math.DS] (2008)

    Google Scholar 

  9. Diacu, F.: The non-existence of centre-of-mass and linear-momentum integrals in the curved N-body problem. arXiv:1202.4739v1 [math.DS] (2012)

    Google Scholar 

  10. Darboux, G.: Étude d’une question relative au mouvement d’un point sur une surface de révolution. Bull. Soc. Math. Franc. 5, 100–113 (1887)

    MathSciNet  Google Scholar 

  11. Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math. IHES 53, 53–73 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gromov, M.: Metric Structures for Riemannian and Non-riemannian Spaces, 3rd printing. Birkhauser, Boston (2007)

    Google Scholar 

  13. Hollos, S., Hollos, R.: The lattice Green function for the Poisson equation on an infinite square lattice. arXiv:cond-mat/0509002v1 [cond-mat.other] (2005)

    Google Scholar 

  14. Lobachevsky, N.I.: The new foundations of geometry with full theory of parallels [in Russian], 1835–1838. In: Collected Works, V. 2, GITTL, Moscow, p. 159 (1949)

    Google Scholar 

  15. Montgomery, R.: A tour of subRiemannian geometries. In: Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002). http://www.ams.org/books/surv/091/ and http://www.ams.org/books/surv/091/surv091-endmatter.pdf

  16. Santoprete, M.: Gravitational and harmonic oscillator potentials on surfaces of revolution. J. Math. Phys. 49, 042903, 16 pp (2008)

    Google Scholar 

  17. Serret, P.J.: Théorie nouvelle géométrique et mécanique des lignes a double courbure. Librave de Mallet-Bachelier, Paris (1860)

    Google Scholar 

  18. Shanbrom, C.: Two problems in sub-Riemannian geometry. Ph.D. Thesis, UC Santa Cruz (2013)

    Google Scholar 

  19. Shchepetilov, A.: Nonintegrability of the two-body problem in constant curvature spaces. J. Phys. A 39, 5787–5806 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zagryadskii, O.A., Kudryavtseva, E.A., Fedoseev, D.A.: A generalization of Bertrand’s theorem to surfaces of revolution. Sbornik 203, 39–78 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Montgomery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montgomery, R., Shanbrom, C. (2015). Keplerian Dynamics on the Heisenberg Group and Elsewhere. In: Chang, D., Holm, D., Patrick, G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Fields Institute Communications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2441-7_14

Download citation

Publish with us

Policies and ethics