Skip to main content

Adaptation of Freshwater Mosquito Vectors to Salinity Increases Arboviral Disease Transmission Risk in the Context of Anthropogenic Environmental Changes

  • Chapter
Global Virology I - Identifying and Investigating Viral Diseases

Abstract

A few mosquito vectors of human viral diseases are known to lay eggs and undergo pre-imaginal development in brackish water. However, Aedes aegypti and Aedes albopictus that are vectors of chikungunya, dengue, yellow fever and other viral diseases have been widely held to do so exclusively in freshwater. Recent evidence however shows that Ae. aegypti and Ae. albopictus can also undergo pre-imaginal development in brackish water in coastal areas of the tropics. This property can contribute to the transmission of viral diseases in a previously unrecognised manner. The impact of environmental changes caused by expanding populations in coastal zones, together with climate changes and rising sea levels caused by global warming, has the potential to enhance transmission of arboviral diseases in coastal areas. Increased transmission of arboviral diseases in coastal areas will also result in higher inland disease incidence. Appropriate policies and strategies to counter this threat need to be developed in a local, national and international context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Fact sheet No. 117—Dengue and severe dengue. 2013. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 26 Dec 2013.

  2. World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control. 2009. http://www.whqlibdoc.who.int/publications/2009/9789241547871_eng.pdf. Accessed 13 June 2013.

  3. World Health Organisation. Fact sheet No 100. Yellow fever. Geneva. 2013. http://www.who.int/mediacentre/factsheets/fs100/en/. Accessed 26 Dec 2013.

  4. Schaffner F, Medlock JM, Van Bortel W. Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect. 2013;19:685–92. doi:10.1111/1469-0691.12189.

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organization. Fact sheet No. 327—Chikungunya. 2014. http://www.who.int/mediacentre/factsheets/fs327/en/. Accessed 5 Apr 2014.

  6. Centre for Disease Control. Chikungunya virus. Atlanta, GA: US Department of Health and Human Service; 2014. http://www.cdc.gov/chikungunya. Accessed 17 July 2014

  7. Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85:328.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Walter Reed Biosystematics Unit. Keys to medically important mosquito species. Silver Spring, MA: Smithsonian Institution; 2013. http://wrbu.org/command_aors_MQ.html. Accessed 26 Dec 2013.

    Google Scholar 

  9. Rezza G. Aedes albopictus and the re-emergence of dengue. BMC Public Health. 2012;12:72. doi:10.1186/1471-2458-12-72.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ramasamy R, Surendran SN. Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Front Physiol. 2012;3:198. doi:10.3389/fphys.2012.00198.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Barraud PJ. Diptera Vol V Family Culicidae. Tribes Megarhinini and Culicini. In: Sewell RBS, Edwards PW, editors. The fauna of British India, including Ceylon and Burma. London: Taylor and Francis; 1934. p. 28–426.

    Google Scholar 

  12. Ramasamy R, Surendran SN. Possible impact of rising sea levels on vector-borne infectious diseases. BMC Infect Dis. 2011;11:18.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bradley TJ. Physiology of osmoregulation in mosquitoes. Annu Rev Entomol. 1987;32:439–62.

    Article  CAS  PubMed  Google Scholar 

  14. Garrett MA, Bradley TJ. Extracellular accumulation of proline, serine and trehalose in the haemolymph of osmoconforming brackish-water mosquitoes. J Exp Biol. 1987;129:231–8.

    CAS  PubMed  Google Scholar 

  15. Smith KE, Van Ekeris LA, Okech BA, Harvey WR, Linser PJ. Larval anopheline mosquito recta exhibit a dramatic change in localization patterns of ion transport proteins in response to shifting salinity: a comparison between anopheline and culicine larvae. J Exp Biol. 2008;211(19):3067–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ramasamy R, Surendran SN, Jude PJ, Dharshini S, Vinobaba M. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS Negl Trop Dis. 2011;5(11):e1369. doi:10.1371/journal.pntd.0001369.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jude PJ, Tharmasegaram T, Sivasubramanyam G, Senthilnathan M, Kannathasan S, Raveendran S, Ramasamy R, Surendran SN. Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae. Parasit Vectors. 2012;5:269. doi:10.1186/1756-3305-5-269.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Surendran SN, Jude PJ, Thabothiny V, Raveendran S, Ramasamy R. Pre-imaginal development of Aedes aegypti in brackish and fresh water urban domestic wells in Sri Lanka. J Vector Ecol. 2012;37(2):471–3.

    Article  PubMed  Google Scholar 

  19. Idris FHJ, Usman A, Surendran SN, Ramasamy R. Detection of Aedes albopictus pre-imaginal stages in brackish water habitats in Brunei Darussalam. J Vector Ecol. 2013;38:197–9.

    Article  PubMed  Google Scholar 

  20. Ramasamy R, Surendran SN. Global environment changes and salinity adaptation in mosquito vectors. Saarbrucken: Lambert Academic Publishing; 2013. p. 100. ISBN 978-3-8484-2290-6.

    Google Scholar 

  21. Ramasamy R, Jude PJ, Veluppillai T, Eswaramohan T, Surendran SN. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. PLoS One. 2014;9(8):e104977. doi:10.1371/journal.pone.0104977.

    Article  PubMed Central  PubMed  Google Scholar 

  22. United Nations Intergovernmental Panel on Climate Change. Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The physical science basis. Summary for Policymakers. 2013. http://www.climatechange2013.org/images/uploads/WGIAR5-PM_Approved27Sep2013.pdf. Accessed 17 Oct 2013

  23. Webb MD, Howard KWF. Modeling the transient response of saline intrusion to rising sea levels. Ground Water. 2011;49(4):560–9.

    Article  CAS  PubMed  Google Scholar 

  24. McGranahan G, Balk D, Anderson B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban. 2007;19:17. doi:10.1177/0956247807076960.

    Article  Google Scholar 

  25. Van Schie C, Spafford H, Carver S, Weinstein P. Salinity tolerance of Aedes camptorhynchus (Diptera: Culicidae) from two regions in southwestern Australia. Aust J Entomol. 2009;48:293–9.

    Article  Google Scholar 

  26. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arboviral vector: from the darkness to the light. Microbes Infect. 2009;11:1177–85.

    Article  CAS  PubMed  Google Scholar 

  27. Surendran SN, Jude PJ, Thavaranjit AC, Eswaramohan T, Vinobaba M, Ramasamy R. Predatory efficacy of Culex (Lutzia) fuscanus (Diptera: Culicidae) on mosquito vectors of human diseases in Sri Lanka. J Am Mosquito Control Assoc. 2013;29(2):168–70. doi: http://dx.doi.org/10.2987/12-6321R.1.

    Article  Google Scholar 

Download references

Conflict of Interest

The author declares no conflict of interest in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ramasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramasamy, R. (2015). Adaptation of Freshwater Mosquito Vectors to Salinity Increases Arboviral Disease Transmission Risk in the Context of Anthropogenic Environmental Changes. In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_3

Download citation

Publish with us

Policies and ethics