Skip to main content

Prion Diseases, HIV-1 Associated Neurocognitive Disorders, and Alzheimer’s Disease: Implications for Protein Misfolding

  • Chapter
Global Virology I - Identifying and Investigating Viral Diseases

Abstract

Protein misfolding is a common feature of several neurodegenerative diseases including prion disease, Alzheimer’s disease (AD), and certain forms of HIV associated neurocognitive disorders (HAND). In classical prion disease the cellular prion protein, PrPC, after partial misfolding, converts into a protease-resistant disease-associated isoform, PrPSc, which aggregates in the brain and forms deposits that are associated with the neurodegeneration. Although the phenomenon of PrPC to PrPSc conversion does not occur in HIV infection, protein misfolding in the course of HIV infection has been noted in several preclinical and clinical reports in the form of self-assembling misfolded tau and amyloid-beta (Aβ) proteins. In addition, the misfolding of these proteins are hallmark pathologies of AD. Biomarkers as indicators for the progression of AD and HAND are in need. In this chapter we examine PrPc, Aβ, and, tau and their association with prion biology, protein misfolding, and the possible use of all three proteins for diagnostic and/or prognostic clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poggiolini I, Saverioni D, Parchi P. Prion protein misfolding, strains, and neurotoxicity: an update from studies on mammalian prions. Int J Cell Biol. 2013;2013:910314.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ciccarelli N, Fabbiani M, Di Giambenedetto S, Fanti I, Baldonero E, Bracciale L. Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology. 2011;76(16):1403–9.

    Article  CAS  PubMed  Google Scholar 

  3. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. CHARTER Group; HNRC Group.HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schouten EJ, Jahn A, Ben-Smith A, Makombe SD, Harries AD, Aboagye-Nyame F, et al. Antiretroviral drug supply challenges in the era of scaling up ART in Malawi. J Int AIDS Soc. 2011;14 Suppl 1:S4.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Winston A, Duncombe C, Li PC, Gill JM, Kerr SJ, Puls R, et al. Altair Study Group Does choice of combination antiretroviral therapy (cART) alter changes in cerebral function testing after 48 weeks in treatment-naive, HIV-1-infected individuals commencing cART? A randomized, controlled study.Clin. Infect Dis. 2010;50(6):920–9.

    Article  CAS  Google Scholar 

  6. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, et al. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS. 2007;21:1915–21.

    Article  PubMed  Google Scholar 

  7. Velasco M, Pareja JA, Losa JE, Valverde JF, Espinosa A, Gujarro C. Dream changes following initiation of efavirenz treatment. Med Clin (Barc). 2011;136(3):103–5.

    Article  Google Scholar 

  8. Waters L, Fisher M, Winston A, Higgs C, Hadley W, Garvey L, et al. A phase IV, double-blind, multicentre, randomized, placebo-controlled, pilot study to assess the feasibility of switching individuals receiving efavirenz with continuing central nervous system adverse events to etravirine. AIDS. 2011;25(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  9. Steinbrink F, Evers S, Buerke B, Young P, Arendt G, Koutsilieri E, Reichelt D, Lohmann H, Husstedt IW, German Competence Network HIV/AIDS. Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol. 2013;20(3):420–8.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson-Wood K, Lee M, Motter R, Hu K, Gordon G, Barbour R, Gordon M, Tan H, Games D, Lieberburg I, Schenk D, Seubert P, McConlogue L. Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A. 1997;94(4):1550–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Funamoto S, Morishima-Kawashima M, Tanimura Y, Hirotani N, Saido TC, Ihara Y. Truncated carboxyl-terminal fragments of beta-amyloid precursor protein are processed to amyloid beta-proteins 40 and 42. Biochemistry. 2004;43(42):13532–40.

    Article  CAS  PubMed  Google Scholar 

  12. Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L. CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology. 2005;65:1490–2.

    Article  CAS  PubMed  Google Scholar 

  13. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL. Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS. 2005;19(4):407–11.

    Article  CAS  PubMed  Google Scholar 

  14. Achim CL, Adame A, Dumaop W, Everall IP, Masliah E. Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol. 2009;4(2):190–9.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bailey AR, Giunta B, Obregon D, Nikolic WV, Tian J, Sanberg CD, Sutton DT, Tan J. Peripheral biomarkers in autism: secreted amyloid precursor protein-alpha as a probable key player in early diagnosis Int. J Clin Exp Med. 2008;1:338–44.

    Google Scholar 

  16. Parker MH, Reitz AB. Assembly of β-amyloid aggregates at the molecular level. Chemtracts-Organic Chemistry. 2000;13(1):51–6.

    CAS  Google Scholar 

  17. Rempel HC, Pulliam L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS. 2005;19(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  18. Esiri MM, Biddolph SC, Morris CS. Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry. 1998;65:29–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer's disease. Biol Psychiatry. 2010;68(10):903–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Okonkwo OC, Mielke MM, Griffith HR, Moghekar AR, O’Brien RJ, Shaw LM, et al. Alzheimer’s disease neuroimaging initiative. Cerebrospinal fluid profiles and prospective course and outcome in patients with amnestic mild cognitive impairment. Arch Neurol. 2011;68(1):113–9.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR, Kauwe JS. CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology. 2009;73(23):1982–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007;64(3):343–9.

    Article  PubMed  Google Scholar 

  23. Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, Holtzman DM. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol. 2009;65(2):176–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fagan AM, Mintun MA, Shah AR, Aldea P, Roe CM, Mach RH, et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med. 2009;1(8–9):371–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA. Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry. 2009;65(11):927–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu Y, Jones M, Hingtgen CM, et al. Uptake of HIV-1 Tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med. 2006;6:1380–7.

    Google Scholar 

  27. Gisslen M, Blennow K, Brew B et al. (2008) CSF neural marker profile distinguishes AIDS dementia complex from Alzheimer’s disease. 15th conference on retroviruses and opportunistic infections 196. Abstract.

    Google Scholar 

  28. Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM. Human amyloid beta synthesis and clearance rates measure in cerebrospinal fluid in vivo. Nat Med. 2006;12:856–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ances BM, Christensen JJ, Teshome M, Taylor J, Xiong C, Aldea P, et al. Cognitively unimpaired HIV-positive subjects do not have increased 11C-PiB: a case-control study. Neurology. 2010;75(2):111–5.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, et al. 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol. 2012;69(1):72–7.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Accelerated Tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol. 2006;111(6):529–38.

    Article  CAS  PubMed  Google Scholar 

  32. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A. 2001;98(12):6923–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Patrick C, Crews L, Desplats P, Dumaop W, Rockenstein E, Achim CL, Everall IP, Masliah E. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine. Am J Pathol. 2011;178(4):1646–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Smith DB, Simmonds P, Bell JE. Brain viral burden, neuroinflammation and neurodegeneration in HAART-treated HIV positive injecting drug users. J Neurovirol. 2014;20(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts TK, Buckner CM, Berman JW. Leukocyte transmigration across the blood–brain barrier: perspectives on neuroAIDS. Front Biosci J Virtual Libr. 2010;15:478–536.

    Article  CAS  Google Scholar 

  36. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci Off J Soc Neurosci. 2006;26:1098–106.

    Article  CAS  Google Scholar 

  37. Roberts TK, Eugenin EA, Morgello S, Clements JE, Zink MC, Berman JW. PrPC the cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. Am J Pathol. 2010;177:1848–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Williams DW, Eugenin EA, Calderon TM, Berman JW. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol. 2012;91:401–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A. 1998;95:3117–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zink MC, Coleman GD, Mankowski JL, Adams RJ, Tarwater PM, Fox K, Clements JE. Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis. 2001;184:1015–21.

    Article  CAS  PubMed  Google Scholar 

  41. Megra B, Eugenin E, Roberts T, Morgello S, Berman JW. Protease resistant protein cellular isoform (PrP(c)) as a biomarker: clues into the pathogenesis of HAND. J Neuroimmune Pharmacol. 2013;8(5):1159–66.

    Article  PubMed  Google Scholar 

  42. Clements JE, Mankowski JL, Gama L, Zink MC. The accelerated simian immunodeficiency virus macaque model of human immunodeficiency virus-associated neurological disease: from mechanism to treatment. J Neurovirol. 2008;14:309–17.

    Article  CAS  PubMed  Google Scholar 

  43. Karapetyan YE, Sferrazza GF, Zhou M, Ottenberg G, Spicer T, Chase P, Fallahi M, Hodder P, Weissmann C, Lasmézas CI. Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci U S A. 2013;110(17):7044–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain. 2006;129(Pt 9):2241–65.

    Article  PubMed  Google Scholar 

  45. Weissmann C, Aguzzi A. Approaches to therapy of prion diseases. Annu Rev Med. 2005;56:321–44.

    Article  CAS  PubMed  Google Scholar 

  46. Brown P. An historical perspective on efforts to treat transmissible spongiform encephalopathy. CNS Neurol Disord Drug Targets. 2009;8(5):316–22.

    Article  CAS  PubMed  Google Scholar 

  47. Kocisko DA, et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol. 2003;77(19):10288–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bertsch U, et al. Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J Virol. 2005;79(12):7785–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Heal W, et al. Library synthesis and screening: 2,4-diphenylthiazoles and 2,4-diphenyloxazoles as potential novel prion disease therapeutics. J Med Chem. 2007;50(6):1347–53.

    Article  CAS  PubMed  Google Scholar 

  50. Kimata A, et al. New series of antiprion compounds: pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation. J Med Chem. 2007;50(21):5053–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ghaemmaghami S, May BC, Renslo AR, Prusiner SB. Discovery of 2-aminothiazoles as potent antiprion compounds. J Virol. 2010;84(7):3408–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Geissen M, et al. From high-throughput cell culture screening to mouse model: identification of new inhibitor classes against prion disease. ChemMedChem. 2011;6(10):1928–37.

    Article  CAS  PubMed  Google Scholar 

  53. Agdeppa ED, Kepe V, Petri A, Satyamurthy N, Liu J, Huang SC, Small GW, Cole GM, Barrio JR. In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene)malono nitrile. Neuroscience. 2003;117:723–30.

    Article  CAS  PubMed  Google Scholar 

  54. Knopman DS. Current treatment of mild cognitive impairment and Alzheimer’s disease. Curr Neurol Neurosci Rep. 2006;6:365–71.

    Article  CAS  PubMed  Google Scholar 

  55. Takatori Y. Mechanisms of neuroprotective effects of therapeutic acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease. Yakugaku Zasshi. 2006;126:607–16.

    Article  CAS  PubMed  Google Scholar 

  56. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ, Memantine Study Group. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348:1333–41.

    Article  CAS  PubMed  Google Scholar 

  57. Colombres M, Sagal JP, Inestrosa NC. An overview of the current and novel drugs for Alzheimer’s disease with particular reference to anti-cholinesterase compounds. Curr Pharm Des. 2004;10:3121–30.

    Article  CAS  PubMed  Google Scholar 

  58. Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets. 2007;8:621–32.

    Article  CAS  PubMed  Google Scholar 

  59. Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M. Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J Neurosci. 2006;23:2611–22.

    Article  PubMed  Google Scholar 

  60. Bynum N, Poklis J, Garside D, Winecker R. Postmortem memantine concentrations. J Anal Toxicol. 2007;31:233–6.

    Article  CAS  PubMed  Google Scholar 

  61. Calabrese P, Essner U, Forstl H. Memantine (ebixa) in clinical practice—results of an observational study. Dement Geriatr Cogn Disord. 2007;24:111–7.

    Article  CAS  PubMed  Google Scholar 

  62. Lexchin J. Different conclusions about memantine. Can Fam Physician. 2007;53:403–4. author reply 404.

    PubMed Central  PubMed  Google Scholar 

  63. Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, Ness D, May PC. Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol. 2005;28:126–32.

    Article  CAS  PubMed  Google Scholar 

  64. Siemers ER, Quinn JF, Kaye J, Farlow MR, Porsteinsson A, Tariot P, Zoulnouni P, Galvin JE, Holtzman DM, Knopman DS, Satterwhite J, Gonzales C, Dean RA, May PC. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology. 2006;66:602–4.

    Article  CAS  PubMed  Google Scholar 

  65. Geerts H. Drug evaluation: (R)-flurbiprofen—an enantiomer of flurbiprofen for the treatment of Alzheimer’s disease. IDrugs. 2007;10:121–33.

    CAS  PubMed  Google Scholar 

  66. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R. A presenilin-1-dependent gamma-secretase-like protease mediates release of notch intracellular domain. Nature. 1999;398:518–22.

    Article  PubMed  Google Scholar 

  67. Kopan R, Goate A. A common enzyme connects notch signaling and Alzheimer’s disease. Genes Dev. 2000;14:2799–806.

    Article  CAS  PubMed  Google Scholar 

  68. Lanzillotta A, Sarnico I, Benarese M, Branca C, Baiguera C, Hutter-Paier B, Windisch M, Spano P, Imbimbo BP, Pizzi M. The γ-secretase modulator CHF5074 reduces the accumulation of native hyperphosphorylated tau in a transgenic mouse model of Alzheimer’s disease. J Mol Neurosci. 2011;45(1):22–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.G. is supported by NIMH/NIH grant (1R01MH098737-02) (PI). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Giunta M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giunta, B., Minagar, A., Fernandez, F. (2015). Prion Diseases, HIV-1 Associated Neurocognitive Disorders, and Alzheimer’s Disease: Implications for Protein Misfolding. In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_22

Download citation

Publish with us

Policies and ethics