Skip to main content

Evolutionary Genetic Bases of Longevity and Senescence

  • Chapter
  • First Online:
Longevity Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 847))

Abstract

Senescence, as a time-dependent developmental process, affects all organisms at every stage in their development and growth. During this process, genetic, epigenetic and environmental factors are known to introduce a wide range of variation for longevity among individuals. As an important life-history trait, longevity shows ontogenetic relationships with other complex traits, and hence may be viewed as a composite trait. Factors that influence the origin and maintenance of diversity of life are ultimately governed by Darwinian processes. Here we review evolutionary genetic mechanisms underlying longevity and senescence in humans from a life-history and genotype-epigenetic-phenotype (G-E-P) map prospective. We suggest that synergistic and cascading effects of cis-ruptive mechanisms in the genome, and epigenetic disruptive processes in relation to environmental factors may lead to sequential slippage in the G-E-P space. These mechanisms accompany age, stage and individual specific senescent processes, influenced by positive pleiotropy of certain genes, superior genome integrity, negative-frequency dependent selection and other factors that universally regulate rarity in nature. Finally we interpret life span as an inherent property of self-organizing systems that, accordingly, maintain species-specific limits for the entire complex of fitness traits. We conclude that Darwinian approaches provide unique opportunities to discover the biological bases of longevity as well as devise individual specific medical or other interventions toward improving health span.

“Some few grow old, most suffer and fall sick,

But all must die.”

- Edwin Arnold (1906)

“So Nature deals with us and takes away

Our playthings one by one…”

- H. W. Longfellow (2004)

“Deaths from old age are due to the breakdown of one organ or another…” - J. B. S. Haldane (1949)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    White and black swans are different species; hence occupy distinct ecological niches in Northern Europe and Southern Australia, respectively. For this reason, black swans are rare in Europe, so are the white ones in Australia. Rarity of black swans in the sixteenth century England was associated with the adage “rare as a black swan.” This expression was extended by Taleb [231] to explain the occurrence of rare and unpredictable events primarily in social contexts.

  2. 2.

    The term “dragon” represents “the mythical animal that belongs to a different animal kingdom beyond the normal, with extraordinary characteristics. The term “king” … emphasize(s) the importance of those events, which are beyond the Parteo law distribution of wealth of their subjects.” Sornette and Ouillion [224].

  3. 3.

    Pareto Law, popularly known as “80–20 rule” suggests that in any self-organized systems, 80 % of effects emanate from about 20 % causes [12]Evolution is indeed a prime example of self-organizing system [123, 264]. Extending Wright’s principle of causality [261, 263, 265] which provided a basis for developing the concept of heritability [101], it may be suggested that low heritability (around 30 %) associated with life history traits, including longevity, among diverse species [198], could be explained through the universal self-organizing principle that spans across the entire tree of life [12, 123].

References

  1. Alcedo J, Flatt T, Pasyukova EG (2013) Neuronal inputs and outputs of aging and longevity. Front Genet 4:71

    PubMed Central  PubMed  Google Scholar 

  2. Alves I, Srámková HA, Foll M, Excoffier L (2012) Genomic data reveal a complex making of humans. PLoS Genet 8 (e1002837)

    Google Scholar 

  3. Annonymous (2012) World health statistics. WHO, Geneva

    Google Scholar 

  4. Antony AC (2007) In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr 85:598S–603S

    Google Scholar 

  5. Arnold SJ (2014) Phenotypic evolution: the ongoing synthesis. Am Nat 183:729–746

    PubMed  Google Scholar 

  6. Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N (2004) Clinical phenotype of families with longevity. J Am Geriatr Soc 52:274–277

    Google Scholar 

  7. Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, Bergman A, Barzilai N (2006) Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol 4(4):e113

    PubMed Central  PubMed  Google Scholar 

  8. Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X, Siegel G, Bergman A, Huffman DM, Schechter CB, Wright WE, Shay JW, Barzilai N, Govindaraju DR, Suh Y (2010) Evolution in health and medicine Sackler colloquium: genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci USA 107:1710–1717

    Google Scholar 

  9. Aubin-Horth N, Susan CP (2009) Genomic reaction norms: using integrative biology to undrsatnd molecular mechanisms of phenotypic plasticity. Mol Ecol 18:3763–3780

    CAS  PubMed  Google Scholar 

  10. Austad SN (1997) Why we age: What Science is discovering about Body’s Journey Through Life. Wiley, New York

    Google Scholar 

  11. Austad SN (2012) Aging: mixed results for dieting monkeys. Nature 489:210–211

    CAS  PubMed  Google Scholar 

  12. Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New York

    Google Scholar 

  13. Barton N, Partridge L (2000) Limits to natural selection. BioEssays 22:1075–1084

    CAS  PubMed  Google Scholar 

  14. Barzilai N, Bartke A (2009) Biological approaches to mechanically understand healthy life span extension achieved by calorie restriction and modulation of hormones. J Gerontol: Biol Sci 64A:187–191

    Google Scholar 

  15. Bergman A, Atzmon G, Ye K, MacCarthy T, Barzilai N (2007) Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging. PLoS Comput Biol 8:e170

    Google Scholar 

  16. Bernal AJ, Jirtle RL (2010) Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res Clin Mol Teratol 88:938–944

    Google Scholar 

  17. Biro FM, Wien M (2010) Childhood obesity and adult morbidities. Am J Clin Nutr 91(suppl):1499S–1505S

    Google Scholar 

  18. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883

    Google Scholar 

  19. Bonduriansky R (2012) Rethinking heredity, again. Trends Ecol Evol 27(6):330–336.

    CAS  PubMed  Google Scholar 

  20. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305

    CAS  PubMed  Google Scholar 

  21. Boscompte J, Jordano P (2014) Mutualistic networks. Princeton University Press, Princeton

    Google Scholar 

  22. Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ (2006) Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev 86(3):967–1008

    CAS  PubMed  Google Scholar 

  23. Budovsky A, Craig T, Wang B, Tacutu R, Csordas A, Lourengo J, Fraifeld VE, de Magalhaes JP (2013) LogevityMap: a database of human genetic variants associated with longevity. Trends in Genet 29:559–560

    CAS  Google Scholar 

  24. Campeau PM, Scriver CR, Mitchell JJ (2008) A 25-year longitudinal analysis of treatment efficacy in inborn errors of metabolism. Mol Genet Metab 95(1–2):11–16

    CAS  PubMed  Google Scholar 

  25. Cannings C, Thompson EA (1981) Geneological and genetic structure. Cambridge University Press, Cambridge

    Google Scholar 

  26. Carey JP (2003) Longevity: the biology an demography of lifespan. Princeton University Press, Princeton

    Google Scholar 

  27. Carroll SP, Jorgensen PS, Kinnison MT, Bergstrom CT, Denison RF, Gluckman P, Smith TB, Strauss SY, Tabashnil BE (2014) Applying evolutionary biology to address global challenges. Science 345:On line Sept 11, 2014

    Google Scholar 

  28. Caswell H, Selguero-Gomez R (2013) Age, stage and senescence in plants. J Ecol 101:585–595

    PubMed Central  PubMed  Google Scholar 

  29. Charlesworth B (1980) Evolution in age-structured populations. Cambridge University Press, Cambridge

    Google Scholar 

  30. Charlesworth B, Charlesworth D (2010) Elements of evolutionary genetics. Roberts & Company Publishers, Greenwood Village

    Google Scholar 

  31. Cheung VG, Spielman RS (2009) Genetics of human gene expression: mapping DNA variants that influence gene expression. Nature Rev Genet 10:595–604

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Chevrud JM (1988) A comparison of genetic and phenotypic correlations. Evolution 41:766–777

    Google Scholar 

  33. Childs B (2001) Medicine in a genetic context. In: Emory and Rimoin’s principles and practice of medical genetics. Churchill Livingstone, London, pp 37–54

    Google Scholar 

  34. Christiansen K, Vaupel JW (1996) Determinants of longevity: genetic, environmental and medical factors. J Intern Med 240:333–341

    Google Scholar 

  35. Christensen K, Doblhammer G, Rau R, Vaupel JW (2009) Ageing populations: the challenges ahead. Lancet 374 (9696):1196–1208

    PubMed Central  PubMed  Google Scholar 

  36. Civelek M, Lusis AJ (2013) Systems genetics appraoches to understand complex traits. Nature Rev Genet 15:34–48

    PubMed Central  PubMed  Google Scholar 

  37. Clark AG (1984) Natural selection with nuclear and cytoplasminc transmission. Genetics 679–701

    Google Scholar 

  38. Comfort A (1979) The biology of senescence. Elsevier, New York

    Google Scholar 

  39. Crow JF (1958) Some possibilities for measuring selection intensities in man. Hum Biol; Int Record Res 30:1–13

    Google Scholar 

  40. Crow JF (2000) The origins, patterns and implications of human spontaneous mutation Nat Rev Genet 1:40–47

    CAS  PubMed  Google Scholar 

  41. Danielsbacka M, Tanskanen AO, Jokela M, Rotkirch A (2011) Grandparental child care in Europe: evidence for preferential investment in more certain kin. Evol Psychol 9:3–24

    PubMed  Google Scholar 

  42. Darwin C (1859) The origin of species. John Murray, London

    Google Scholar 

  43. Davidovic M, Sevo G, Svorcan P, Milosevic DP, despotovic N, Erceg P (2012) Old age as a privilege of the “selfish ones”. Aging Dis 2:139–146

    Google Scholar 

  44. Davis BD (1949) The isolation of biochemically deficient mutants of bacteria by means of penicillin. Proc Natl Acad Sci USA 35(1):1–10

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Dawkins R (1999) The extended phenotype. Oxford University Press, Oxford

    Google Scholar 

  46. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14:R102

    PubMed Central  PubMed  Google Scholar 

  47. de Jong G Bijma P (2002) Selection and phenoypic plasticity in evlutionary biology and animal breeding. Livest Prod Sci 78:195–214

    Google Scholar 

  48. de Magalhaes JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol 62:149–160

    Google Scholar 

  49. de Magalhaes JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25:875–881

    PubMed Central  PubMed  Google Scholar 

  50. De S (2011) Somatic mosaicism in healthy human tissues. Trends Genet 27(6):217–223

    CAS  PubMed  Google Scholar 

  51. de Visser JA, Hermisson J, Wagner G, Meyers AL, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Perspective: evolution and detection of genetic robustness. Evolution 57:1959–1972

    PubMed  Google Scholar 

  52. Ding, Y, Zhou Q, Wang W (2012) Origins of new genes and evolution of their novel functions. Annu Rev Ecol Evol Syst 43:345–363

    Google Scholar 

  53. Dmiriew C, Blows MW, Rowe L (2010) Ontogentic change in genetic variance in size epends on growth environment. Am Nat 175:640–649

    Google Scholar 

  54. Durham MF, Magwire MM, Stone EA, Leips J (2014) Genome-wide analysis in Drosophila reveals age-specific effects of SNPs on fitness traits. Nat Commun 5:4338

    CAS  PubMed  Google Scholar 

  55. Edwin Arnold (1906) The Light of Asia. Little, Brown and Company, Boston

    Google Scholar 

  56. Ellison PE (2003) On fertile ground: a natural history of human reproduction. Harvard University Press, Cambridge

    Google Scholar 

  57. Engels WR, Johnson-Schlitz D, Flores C, White L, Preston CR (2007) A third link connecting aging with double strand break repair. Cell Cycle 6(2):131–135

    CAS  PubMed  Google Scholar 

  58. Erceg P, Milosevic DP, Despotovic N, Davidovic M (2008) Chromosomal changes in ageing. J Genet 9:277–288

    Google Scholar 

  59. Ewens WJ (2004) Mathematical population genetics: 1. theoretical introduction, 2nd edn. Springer, New York

    Google Scholar 

  60. Eyre-Walker A (2010) Genetic architecture of a complex trait and its implications for fitness and genome-wide association studies. Proc Natl Acad Sci 107:1752–1756

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Eyre-Walker A, Keightley PD (1999) High genomic deleterious mutation rates in hominids. Nature 397:344–347

    CAS  PubMed  Google Scholar 

  62. Ezawa K, Innan H (2013) Theoretical framework of population genetics with somatic mutations taken into account: application to copy number variations in humans. Heredity 111:364–374

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics. Addison -Wesley, Harlow, Essex.

    Google Scholar 

  64. Ferrucci, L, Hesdorffer, C, Bandinelli, S, Simonsick, EM (2010) Frailty as a nexus between the biology of aging, environemental conditions and clinical geriatrics. Pub Health Rev 32:475–488

    Google Scholar 

  65. Finch C (1990) Longevity, senescence and the genome. University of Chicago, Chicago

    Google Scholar 

  66. Finch C (2007) The biology of human longevity: inflammation, nutrition, and aging in the evolution of lifespans. Academic Press, Burlington

    Google Scholar 

  67. Finch C, Tanzi RE (1997) Genetics of aging. Science 278:407–411

    CAS  PubMed  Google Scholar 

  68. Finch CE, Austad SN (2012) Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging. A Am Aging Assoc (AGE (Special Issue) Nonhuman Primate Moels of Aging):S11357

    Google Scholar 

  69. Flatt T, Heyland A (2011) Integrating mechanisms into life history evolution. In: Flatt T, Heyland A (eds) Mechanisms of life history evolution. Oxford University Press, Oxford, pp 1–3

    Google Scholar 

  70. Forsberg LA, Rasi C, Razzaghian HR, Pakalapati G, Waite L, Thilbeault KS, Ronowicz A, Wineinger NE, Tiwari HK, Boomsma D, Westerman MP, Harris JR, Lyle R, Essand M, Eriksson F, Assimes TL, Iribarren C, Strachan E, O’Hanlon TP, Rider LG, Miller FW, Giedraitis V, Lannfelt L, Ingelsson M, Piotrowski A, Pedersen NL, Absher D, Dumanski JP (2012) Age-related somatic structural changes in the nuclear genome of human blood cells. Am J Hum Genet 90:217–228

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S, Rieder MJ, Altshuler D, Shendure J, Nickerson DA, Bamshad MJ, Akey JM (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493(7431):216–220

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Furrow RF, Christiansen FB, Feldman MW (eds) (2013) Epigenetic variation, phenotypic heritability, and evolution. Epigenetics and complex traits. Springer, New York

    Google Scholar 

  73. Gaffney DJ (2013) Global properties and functional complexity of human gene regulatory variation. PLoS Genet 9:e1003501

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Galvani AP, Slatkin M (2004) Intense selection in an age-structured population. Proc R Soc B: Biolo Sci 271:171–176

    Google Scholar 

  75. Garnier S, Murphy T, Lutz M, Hurme E, Leblanc S, ID C (2013) Stability and responsiveness in a self-organiz living architecture. PLoS Comput Biol 9:e1002984

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Garrod AE (1902) About Alkaptonuria. Medico-Chirurgical transactions 85:69–78

    Google Scholar 

  77. Garrod A (1908) The Croonian lectures on inborn errors of metabolism. The Lancet 172:1–7.

    Google Scholar 

  78. Gluckman P, Beedle A, Hanson M (2009) Principles of evolutionary medicine. Oxford University Press, USA

    Google Scholar 

  79. Gluckman PD, Hanson MA, Beedle AS, Bucklijas T, Low FM (2011) Epigenetic of human disease. In: Hallgrimsson B, Hall BK (eds) Epigenetics: linking genotype and phenotype and development and evolution. University of California Press, Berkeley, pp 398–423

    Google Scholar 

  80. Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, Oxford

    Google Scholar 

  81. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: A landscape takes shape. Cell 128:635–638

    Google Scholar 

  82. Golden TR, Beckman KB, Lee AH, Dudek N, Hubbard A, Samper E, Melov S (2007) Dramatic age-related changes in nuclear and genome copy number in the nematode Caenorhabditis elegans. Aging Cell 6(2):179–188

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Govindaraju DR, Pencina KM, Raj DS, Massaro JM, Carnes BA, D’Agostino RB (2014) A systems analysis of age-related changes in some cardiac aging traits. Biogerontology 15:139–152

    CAS  PubMed  Google Scholar 

  84. Govindaraju DR (2014) Opportunity for selection in human health. Adv. in Genetics 87:1–70?87.

    Google Scholar 

  85. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield palteaus in historical crop production trends. Nat. Commun. 4:2918

    Google Scholar 

  86. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li W-H (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    CAS  PubMed  Google Scholar 

  87. Haldane JBS (1932) The causes of evolution. Longman and Green, London

    Google Scholar 

  88. Haldane JBS (1941) New paths in genetics. George Allen and Unwin, Ltd., London

    Google Scholar 

  89. Haldane JBS (1949) Disease and evolution. Ricerca Scientifica 19:3–10

    Google Scholar 

  90. Haldane JBS, Crew FAE (1925) Change of linkage in poultry with age. Nature 115:641

    Google Scholar 

  91. Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12:12–45

    CAS  PubMed  Google Scholar 

  92. Hanson TF, Pélabon C, Houle D (2011) Heritability is not evolvabity. Evol Biol 38:258–277

    Google Scholar 

  93. Harman D (1956) Ageing: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Google Scholar 

  94. Hawkes K, O’Coneell JF, Jone NGB, Alvarez H, Charnov EL (1998) Grandmothering, menopause, and the evolution of life history traits. Proc Natl Acad Sci USA 953:1336–1339

    Google Scholar 

  95. Hayflick L (2003) Living forever and dying in the attempt. Exp Gerontol 38:1231–1241

    Google Scholar 

  96. Hemani G, Yang J, Vinkhuyzen A, Powell JE, Willemsen G, Hottenga JJ, Abdellaoui A, Mangino M, Valdes AM, Medland SE, Madden PA, Heath AC, Henders AK, Nyholt DR, de Geus EJ, Magnusson PK, Ingelsson E, Montgomery GW, Spector TD, Boomsma DI, Pedersen NL, Martin NG, Visscher PM (2013) Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs. Am J Hum Genet 93:865–875

    Google Scholar 

  97. Hemmings NL, Slate J, Birkhead TR (2012) Inbreeding causes early death in a passerine bird. Nat Commun 3:863

    CAS  PubMed  Google Scholar 

  98. Hetzer MW (2010) The role of nuclear pore complex in aging post mitotic cells. Aging 2:74–75

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Hill WG (1996) Sewall Wright’s “Systems of Mating”. Genetics 143(4):1499–1506

    Google Scholar 

  100. Hill WG, Mulder HA (2010) Genetic analysis of environmental variation. Genet Res (Camb) 92:381–395

    Google Scholar 

  101. Hill WG, Zhang X-S (2012) On the pleiotropic structure of the genotype-phenotype map and the evolvability of complex organisms. Genetics 190:1131–1137

    Google Scholar 

  102. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive variance for complex traits. PLoS Genet 4:1000008

    Google Scholar 

  103. Hoeijmakers JH (2009) DNA damage, aging, cancer. New Eng J Med 15:475–485

    Google Scholar 

  104. Holt RD (1997) Rarity and evolution: some theoretical considerations. In: Kunin WE, Gaston KJ (eds) The biology of rarity. Chapman and Hall, London, pp 209–234

    Google Scholar 

  105. Holzinger KE, Pacala SW (1990) Multiple niche polymorphisms in plant populations. Am Nat 135:301–309

    Google Scholar 

  106. Horton TH (2005) Fetal origins of developmental plasticity: animal models of induced life history variation. Am J Hum Biol 17:34–43

    Google Scholar 

  107. Horvath S (2013) DNA methylation age of human tissues. Genome Biol 14:R115

    PubMed Central  PubMed  Google Scholar 

  108. Houle D, Hughes KA, Hoffmaster DK, Ihara J, Assimacopoulos, S, Canada D, Charlesworth B (1994) The effects of spontaneous mutation on quantitative traits: I. Variances and covariances of life history traits. Genetics 138:773–785

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    CAS  PubMed  Google Scholar 

  110. Hutchinson GE (1957) “Concluding remarks” Cold Spring Harbor Symp. Quant Biol 22:415–427

    Google Scholar 

  111. Huerta-Sanchez E, Durrett R, Bustamante CD (2008) Population genetics of polymorphism and divergence under fluctuating selection. Genetics 178:325–337

    PubMed Central  PubMed  Google Scholar 

  112. Huerta-Sanchez E, Degiorgio M, Pagani L, Tarekegn A, Ekong R, Antao T, Cardona A, Montgomery HE, Cavalleri GL, Robbins PA, Weale ME, Bradman N, Bekele E, Kivisild T, Tyler-Smith C, Nielsen R (2013) Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations. Mol Biol Evol 30:1877–1888

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Hughes KA, Charlesworth B (1994) A genetic analysis of senescence in Drosophila. Nature 367: 64–66

    Google Scholar 

  114. Jansson M, Laikre L (2014) Recent breeding history of dog breeds in Sweden: modest rates of inbreeding, extensive loss of genetic diversity and lack of correlation between inbreeding and health. J Anim Breed Genet 131:153–162

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Jones BL, Swallow DM (2011) The impact of cis-acting polymorphisms on the human phenotype. HUGO J 2:13–23

    Google Scholar 

  116. Jones JH (2009) The force of selection on the human life cycle. Evol Hum Behav 30:305–314

    Google Scholar 

  117. Jones OR, Scheuerlein A, Salguero-Gomez R, Camarda CG, Schaible R, Casper BB, Dahlgren JP, Ehrlen J, Garcia MB, Menges ES, Quintana-Ascencio PF, Caswell H, Baudisch A, Vaupel JW (2013) Diversity of ageing across the tree of life. Nature 505:169–173

    PubMed Central  PubMed  Google Scholar 

  118. Jorde L, Carey JC, Bamshad M (2009) Medical genetics. Mosby, Philadelphia

    Google Scholar 

  119. Kamran P, Sereti KI, Zhao P, Ali SR, Weissman IL, Ardehali R (2013) Parabiosis in mice: a detailed protocol. J Vis Exp (80). doi:10.3791/50556

    Google Scholar 

  120. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634

    CAS  PubMed  Google Scholar 

  121. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  122. Keinan A, Clark AG (2012) Recent explosive human population growth hasresulted in an excess of rare genetic variants. Science 336:740–743

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Kimber CM, Chippendale AK (2013) Mutation, condition, an the maintenance of extended lifespan in Drosophila. Curr Biol 23:2283–2287

    CAS  PubMed  Google Scholar 

  124. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Kingman JFC (1982) On the geneology of large populations. J Appl Probab 19:27–43

    Google Scholar 

  126. Kingsolver JG, Izem R, Regland GJ (2004) Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves. Integr Comp Biol 44:450–460

    Google Scholar 

  127. Kingsolver JG, Pfenning DW (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572

    Google Scholar 

  128. Kirkpatrick TB (2011) Systems biology of ageing and longevity. Phil Trans R Soc B 366:64–70

    Google Scholar 

  129. Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–304

    Google Scholar 

  130. Kleinjan DJ, Coutinho P (2009) Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease. Brief funct Genom Proteom 4:317–332

    Google Scholar 

  131. Kohler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GC, Brown DL, Brudno M, Campbell J, Fitzpatrick DR, Eppig JT, Jackson AP, Freson K, Girdea M, Helbig I, Hurst JA, Jahn J, Jackson LG, Kelly AM, Ledbetter DH, Mansour S, Martin CL, Moss C, Mumford A, Ouwehand WH, Park SM, Riggs ER, Scott RH, Sisodiya S, Vooren SV, Wapner RJ, Wilkie AO, Wright CF, Vulto-van Silfhout AT, Leeuw ND, de Vries BB, Washingthon NL, Smith CL, Westerfield M, Schofield P, Ruef BJ, Gkoutos GV, Haendel M, Smedley D, Lewis SE, Robinson PN (2013) The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 42:D966–974

    PubMed Central  PubMed  Google Scholar 

  132. Krakauer AH, Webster MS, Duval EH, Jones AG, Shuster SM (2011) The opportunity for sexual selection: not mismeasured, just misunderstood. J Evol Biol 24:2064–2071

    CAS  PubMed  Google Scholar 

  133. Kraus C, Pavard S, Promislow DEL (2013) The size–life span trade-off decomposed: why large dogs die young. 181:492–505

    Google Scholar 

  134. Kriete A (2013) Robustness and aging. Biosystems 112:37–48

    PubMed  Google Scholar 

  135. Kuh D, Ben-Shlomo Y, Lynch J, Hallqvist J, Power C (2003) Life course epidemiology. J Epidemiol Commun Health 57:778–783

    CAS  Google Scholar 

  136. Kuningas M, Westendorp RGJ (2011) Mechanisms of aging in human populations. In: Flatt T, Heyland A (eds) Mechanisms of life history evolution. Oxford University Press, Oxford, pp 210–217

    Google Scholar 

  137. Lande R (1982) A quantitative genetic theory of life history evolution. Ecology 63:607–615

    Google Scholar 

  138. Leiserson MD, Eldridge JV, Ramachandran S, Raphael BJ (2013) Network analysis of GWAS data. Curr Opin Genet Dev 23:602–610

    CAS  PubMed  Google Scholar 

  139. Lerner IM (1954) Genetic homeostasis. Oliver and Boyd, Edinburgh

    Google Scholar 

  140. Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333

    Google Scholar 

  141. Levi-Strauss, C (1969) The elementary stuctures of Kinships. Beacon Press, Boston

    Google Scholar 

  142. Levitis DA (2011) Before senescence: the evolutionary demography of ontogenesis. Proc R Soc B: Biol Sci 278:801–809

    Google Scholar 

  143. Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18

    Google Scholar 

  144. Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  145. Lewontin R (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  146. Lewontin RC (1982) Organism and environment. In Plotkin EC (ed.) Learning, development and culture. Wiley and Sons, New York, pp 151–170

    Google Scholar 

  147. Lewontin RC (2006) The analysis of variance and analysis of causes. Int J Epidemiol 35:520–525

    CAS  PubMed  Google Scholar 

  148. Lieberman D (2013) The story of the human body. Pantheon Books, New York

    Google Scholar 

  149. Livnat A, Papadimitriou C, Dushoff J, Feldman MW (2008) A mixability theory for the role of sex in evolution. Proc Natl Acad Sci 105:19803–19808

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Longfellow H. W. (2004) The Sonnets of Henry Wadsworth Longfellow. Reprint edn. Kessinger Publishing LLC., Whitefish

    Google Scholar 

  151. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Lykken DT, McGue M, Tellegen A, Bouchard TJ, Jr. (1992) Emergenesis: Genetic traits that may not run in families. Amer. Psychologist 47:1565–1577

    Google Scholar 

  153. MacArthur RH, Wilson EO (1967) The theory of Isalnd biogeography. Princeton University Press, Princeton

    Google Scholar 

  154. Macdonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW (2013) The database of genomic variants: a curated collection of sturctural in the human genome. Nucleic Acids Res42:D986–D992

    Google Scholar 

  155. MacKenzie A, HIng B, Davidson S (2013) Exploring the effects of polymorphisms on cis -regulatory signal transduction response. Cell 19:99–107

    CAS  Google Scholar 

  156. Martin GM, Bergman A, Barzilai N (2007) Genetic determinants of human health span and life span. PLoS Genet 3:e125

    PubMed Central  PubMed  Google Scholar 

  157. Mather Kn Jinks JL (1982) Biometrical Genetics. Chapman & Hall. London

    Google Scholar 

  158. Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    CAS  PubMed  Google Scholar 

  159. Mayr E (1976) Populations, species and evolution. Belknap Press of Harvard University, Cambridge

    Google Scholar 

  160. Mazzio EA, Soliman KF (2012) Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7:119–130

    PubMed Central  CAS  PubMed  Google Scholar 

  161. McCormack MA, Promislow DE (2014) Networks in the biology of aging: powerful tools for a complex process. Annu Rev Gerontol Geriatr 34:243–266

    Google Scholar 

  162. McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Online Mendelian Inheritance in Man, OMIM (2013) McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University

    Google Scholar 

  164. Medawar PB (1952) An unsolved problem of biology. H. K. Lewis, London

    Google Scholar 

  165. Medawar PB, Medawar JS (1983) Aristotle to zoos: a philosophical dictionary of biology. Harvard University Press, Cambridge

    Google Scholar 

  166. Medvedev ZA (1990) An attmpt to rationalize classification of theories of aging. Biol Rev 65:375–398

    CAS  PubMed  Google Scholar 

  167. Meyer J (2010) Centenarians:2010. U. S. Census Bureau, Washington, D. C.

    Google Scholar 

  168. Mitra K, Carvunis AR, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 10:719–732

    Google Scholar 

  169. Moczek AP, Sultan S, Foster S, Ledon-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc Biol Sci 278:2705–2713

    PubMed Central  PubMed  Google Scholar 

  170. Montagu A (1981) Growing young. McGraw Hill., New York

    Google Scholar 

  171. Moorad JA, Promislow DE (2011) Evolutionary demography and quantitative genetics: age-specific survival as a threshold trait. Proc Biol Sci 278:144–151

    PubMed Central  PubMed  Google Scholar 

  172. Moore KL, Persaud TVN (2007) The developing human: clinically oriented embryology, 8th edn. Saunders

    Google Scholar 

  173. Morton NE (2005) Linkage disequilibrium maps and association mapping. J Clin Invest 115:1425–1430

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Mueller LD, Rose MR (1996) Evolutionary theory predicts late-life mortality plateaus. Proc Natl Acad Sci USA 93:15249–15253

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Mueller LD, Nussbaum TJ, Rose MR (1995) The Gompertz equation as a predictive tool in demography. Experiment Gerontol 30:553–569

    CAS  Google Scholar 

  176. Mueller LD, Rauser CL, Rose MR (2011) Does aging stop? Oxford University Press, New York

    Google Scholar 

  177. Mulder HA, Ronnegard L, Fikse WF, Veerkamp RF, Strandberg E (2013) Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genet Sel Evol 45:23

    PubMed Central  PubMed  Google Scholar 

  178. Muller HJ (1950) Our load of mutations. Am J Hum Genet 2:111–176

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Nakamura E, Miyao K (2003) Further evaluation of the basic nature of the human biological aging process based on a factor analysis of age-related physiological variables. J Gerontol 58:196–204

    Google Scholar 

  180. Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Nelson RM, Pettersson ME, Carlborg O (2013) A century after Fisher: time for a new paradigm in quantitative genetics. Trends in Genet 12:669–676

    Google Scholar 

  183. Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22(17):R741–752

    CAS  PubMed  Google Scholar 

  184. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466:1057–1062

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Okasha S (2004) Multilevel selection, covariance and contextual analysis. Br j PhiloSci 55:481–504

    Google Scholar 

  186. Odling-Smee J, Erwin DH, Palkovacs EP, Feldman MW, Laland KN (2013) Niche construction theory: a practical guide for ecologists. Q Rev Biol 88:3–28

    Google Scholar 

  187. Osorio I, Frei MG, Sornette D, Milton J, Lai YC (2010) Epileptic seizures: quakes of the brain? Phys Rev E Stat Nonlin Soft Matter Phys 82(2 Pt 1):021919

    PubMed  Google Scholar 

  188. Parsons PA (2007) Antagonistic pleiotropy and the stress theory of aging. Biogerontology 8:613–617

    PubMed  Google Scholar 

  189. Partridge L (2010) The new biology of aging. Phil Trans R Soc B 365:147–154

    PubMed Central  PubMed  Google Scholar 

  190. Passtoors WM, Boer JM, Goeman JJ, van den Akker EB, Zwaan BJ, Scarborough A, van der Breggen R, Deelen J, van Ommen GB, Westendorp RG, de Craen AJ, White AJ, Gunn DA, Slagboom PE, Beekman M (2012) Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. PLoS One 7:e27759

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Pearl J (2014) Understanding Simpson’s Paradox. The American Statistician (In Press)

    Google Scholar 

  192. Perlman RL (2013) Evolution and medicine. Oxford University Press, Oxford

    Google Scholar 

  193. Pieschl S, Duponloup I, Kirkpatrick M, Excoffier L (2013) On the accumulation of deleterious mutations during range expansions. Molecular Ecology

    Google Scholar 

  194. Polak M, Tomkins JL (2013) Developmental selection against developmental instability: a direct demonstration. Biol Lett 9:20121081.

    PubMed Central  PubMed  Google Scholar 

  195. Powell JE, Henders AK, McRae AF, Kim. J, Hemani G, Martin NG, Dermitzakis ET, Gibson G, Montgomery GW, Visscher PM (2013) Congruence of Additive and non-additive effects on gene expression estimated from pedigree and SNP Data. PLoS Genet 9:e1003502

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Price T, Schluter D (1991) On the low heritability of life-history traits. Evolution 45:853–861

    Google Scholar 

  197. Promislow DE, Fedorka KM, Burger JMS (2006) Evoutionary biology of aging: future directions, 7th edn. Academic Press, Burlington

    Google Scholar 

  198. Proulx SR, Phillips PC (2005) The opportunity for canalization and the evolution of genetic networks. Am Nat 165(2):147–162

    PubMed  Google Scholar 

  199. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148(1–2):46–57

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 7:395–401

    CAS  PubMed  Google Scholar 

  201. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261

    CAS  PubMed  Google Scholar 

  202. Ricklefs RE (2010) Life-history connections to rates of aging in terrestrial vertebrates. Proc Natl Acad Sci 107:10314–10319

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Riska B (1989) Composite traits, selection response, and evolution. Evolution 43:1172–1191

    Google Scholar 

  204. Roff DA (2002) Life history evolution. Sinauer Associates, Inc. Sunderland

    Google Scholar 

  205. Roff DA (2007) Contributions of genomics to life-history theory. Nat Rev Genet 8:116–125

    CAS  PubMed  Google Scholar 

  206. Roff DA, Ticker J, Stirling G, Fairbairn DJ (1999) The evolution of threshold traits: effects of selection on fecundity and correlated response in wing domorphism in the sand cricket. J Evol Biol 12:535–546

    Google Scholar 

  207. Rose MR (1991) The evolutionary biology of aging. Oxford University Press, New York

    Google Scholar 

  208. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Sachs MK, Yoder MR, Turcotte DL, Rundle JB, Malamud BD (2012) Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and SOC models. Eur Phys J Special Topics 205:167–182

    Google Scholar 

  210. Sadikovic B, Al-Romaih K, Squire JA, Zielenska M (2008) The cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genom 9:394–408

    CAS  Google Scholar 

  211. Samuels DC, Li C, Li B, Song Z, Torstenson E, Clay HB, Rokas A, Thornton-Wells TA, Moore JH, Hughes TM, Hoffman RD, Haines JL, Murdock DG, Mortlock DP, Williams SM (2013) Recurrent tissue-specific mtDNA mutations are common in humans 9:e1003929

    Google Scholar 

  212. Scherer SW, Lee C, Birney E, Altshuler DM, Eichler EE, Carter NP, Hurles ME, Feuk L (2007) Challenges and standards in integrating surveys of structural variation. Nat Genet 39 (7 Suppl):S7–15

    Google Scholar 

  213. Seashore MR, Wappner RS (1996) Genetics in primary care & clinical medicine. Appleton and Lange, Stamford

    Google Scholar 

  214. Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    CAS  PubMed  Google Scholar 

  215. Shock NW (1962) Biological aspects of aging. Columbia University Press, New York

    Google Scholar 

  216. Simmons MJ, Crow JF (1977) Mutations affecting fitness in drosophila populations. Annu Rev Genet 11:49–78

    CAS  PubMed  Google Scholar 

  217. Simmons AD, Carvalho CM, Lupski JR (2012) What have studies of genomic disorders taught us about our genome? Methods Mol Biol 838:1–27

    CAS  PubMed  Google Scholar 

  218. Slack C, Partridge L (2013) Genes, pathways and metabolism in ageing. Drug discovery today: disease models 10:e87–e93

    Google Scholar 

  219. Snoke MS, Promislow DE (2003) Quantitative genetic tests of recent senscence theory: age specific mortality andmale fertility in Drosophila mealnogaster. Heredity 91:546–556

    CAS  PubMed  Google Scholar 

  220. Soltow QA, Jones DP, Promislow DE (2010) A network perspective on metabolism and aging. Integr Comp Biol 50:844–854

    PubMed Central  PubMed  Google Scholar 

  221. Sornette D (2009) Dragon-kings, black swans and the prediction of crises. arXiv:09074290:1–18

    Google Scholar 

  222. Sornette D, Ouillon G (2012) Dragon kings: Mechanisms, statistical methods and empirical evidence. Eur Phys J Special Topics 205:1–26

    Google Scholar 

  223. Soubry A, Hoyo C, Jirtle RL, Murphy SK (2014) A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays 36:359–371

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Stearns SC (1982) The role of development in the evolution of life histories. In: Bonner JT (ed) Report of the Dahlem workshop on evolution and development. Springer, Berlin, pp 10–15

    Google Scholar 

  225. Stearns SC (1992) The evolution of life histories. Oxford University Press, USA

    Google Scholar 

  226. Stearns SC, Byars SG, Govindaraju DR, Ewbank D (2010) Measuring selection in contemporary human populations. Nat Rev Genet 11:611–622

    CAS  PubMed  Google Scholar 

  227. Suk EK, McEwen GK, Duitama J, Nowick K, Schulz S, Palczewski S, Schreiber S, Holloway DT, McLaughlin S, Peckham H, Lee. C., Huebsch. T., Hoehe MR (2011) A comprehensively molecular haplotype-resolved genome of a European individual. Genome Res 21:1672–1685

    PubMed Central  CAS  PubMed  Google Scholar 

  228. Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhães JP (2013) Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 41:D1027–D1033

    PubMed Central  CAS  PubMed  Google Scholar 

  229. Taleb N (2007) The black swan: the impact of the highly improbable. 1st edn. Random House, New York

    Google Scholar 

  230. Templeton A (2006) Population genetics and microevolutionary theory. Hoboken, NJ

    Google Scholar 

  231. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM, Jordan D, Leal SM, Gabriel S, Rier MJ, Abecasis, G., Altshuler D, Nickerson DA, Boerwinkle E, Sunyaev S, Bustamante CD, Bamshad MJ, Akey JM, Broad GO., Seattle GO, Project aobotNES (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:64–69

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM (2010) Tissue-specific dysreguation of DNA methylation in aging Cell 9:506–518

    CAS  Google Scholar 

  233. Trinkhaus E (2005) Early modern humans. Annu Rev Anthropol 34:207–230

    Google Scholar 

  234. Uyeda JC, Hansen TF, Arnold SJ, Penaar J (2011) The million-year wait for macroevolutionary bursts. Proc Natl Acad Sci USA 108:15908–15913

    PubMed Central  CAS  PubMed  Google Scholar 

  235. Vacante M, D’Agata V, Motta M, Malaguarnera G, Biondi A, Basile F, Malaguarnera M, Gagliano C, Drago F, Salamone S (2012) Centenarians and supercentenarians: a black swan. Emerging social, medical and surgical problems. BMC Surg 12(Suppl 1):S36

    PubMed Central  PubMed  Google Scholar 

  236. van Heemst D (2010) Insulin, IGF-1 and longevity. Aging Dis 1:147–157

    PubMed Central  PubMed  Google Scholar 

  237. Vaupel JW (1998) Biodemographic Trajectories of Longevity. Science 280:855–860

    CAS  PubMed  Google Scholar 

  238. Vaupel JW (2010) Biodemography of human ageing. Nature 464:536–542

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Verhaak RG, Mills GB (2012) Regulation of mRNA expression in breast cancer—a cis-tematic trans-action. Breast Cancer Res 14:322

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Vijg J (2007) Aging of the Genome: the dual role of the DNA in life an death. Oxford University Press, Oxford

    Google Scholar 

  241. Vijg J, Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75:645–668. doi:10.1146/annurev-physiol-030212-183715

    CAS  PubMed  Google Scholar 

  242. Wachter KW, Evans SN, Steinsaltz D (2013) The age-specific force of natural selection and biodemographic walls of death. Proc Natl Acad Sci USA 110:10141–10146

    PubMed Central  CAS  PubMed  Google Scholar 

  243. Waddington CH (1942) The epigenome. Endeavour 1:18–21

    Google Scholar 

  244. Waddington CH (1957) The strategy of genes. George Allen & Unwin, London

    Google Scholar 

  245. Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Integr Comp Biol 36:36–43

    Google Scholar 

  246. Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931

    CAS  PubMed  Google Scholar 

  247. Wayne ML, Pan YJ, Nuzhdin SV, McIntyre LM (2004) Additivity and trans-acting effects on gene expression in male Drosophila simulans. Genetics 168:1413–1420

    PubMed Central  CAS  PubMed  Google Scholar 

  248. Wei W-H, Hemani G, Haley CS (2014) Detecting epistasis in human complext traits. Nat Rev Genet 15:000–000

    Google Scholar 

  249. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    CAS  PubMed  Google Scholar 

  250. Weismann A (1882) Essays upon heredity and kindred biological problems, vol. 2. E.B. Poulton and Shipley (eds) Translation. Oxford University Press, Oxford

    Google Scholar 

  251. West G, Bergman A (2009) Towards a systems biology framework for understanding aging and healthspan. J Gerontol A Biol Sci Med Sci 64(2):204–208

    Google Scholar 

  252. West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 628–631

    Google Scholar 

  253. Willcox DC, Willcox BJ, Wang N-C, Ha Q, Rosenbaum M, Suzuki M (2005) Life at the extreme limit: Phenotypic characteristics of superentenarians in Okinawa. J Gerontol 63:1201–1208

    Google Scholar 

  254. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Google Scholar 

  255. Wolak ME, Keller LF (2014) Dominance genetic variance and inbreeding in natural populations. In: Charmantier A, Grant D, Kruuuk LE (eds) Quantitative genetics in the wild. Oxford University Press, Oxford, pp 104–127

    Google Scholar 

  256. Wolff JN, Ladoukakis ED, Enriquez JA, Dowling DK (2014) Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos Trans R Soc Lond B Biol Sci 369 (1646)

    Google Scholar 

  257. Woods R (2009) Death before birth. Oxford University Press, Oxford

    Google Scholar 

  258. Wray GA (2013) Genomics and the evolution of phenotypic traits. Annu Rev Ecol Syst 44:51–72

    Google Scholar 

  259. Wright S (1916) An intensive study of the inheritance of color and coat characters in guinea pigs with special reference to graded variation. Carnegie Institute of Washington Publication 241:59–160

    Google Scholar 

  260. Wright S (1920) The relative importance of heredity and environment in determining the piebald pattern of Guinea-Pigs. Proc Natl Acad Sci USA 6:320–332

    PubMed Central  CAS  PubMed  Google Scholar 

  261. Wright S (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  262. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed Central  CAS  PubMed  Google Scholar 

  263. Wright S (1934a) The method of path coefficients. Ann Math Stat 5:161–215

    Google Scholar 

  264. Wright S (1934b) Physiological and evolutionary theories of dominance. Am Heart J 68:24–53

    Google Scholar 

  265. Wright S (1988) Surfaces of selective value revisited. Am Nauralist 131:115–123

    Google Scholar 

  266. Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909

    CAS  PubMed  Google Scholar 

  267. Yin D, Chen K (2005) The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Experimental Gerontol 40:455–465

    CAS  Google Scholar 

  268. Young ID (2006) Introduction to risk calculation in genetic counseling. Oxford University Press, USA

    Google Scholar 

  269. Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451–481

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Drs. Gil Atzmon for inspiring me to write this chapter, Nir Barzilai for the enduring encouragement, and Konstantin Khrapko for logistical support. My special thanks are due also to Dr. Sri Raj, for insightful comments. I express my profound gratitude to my family for their enduring patience and moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diddahally R. Govindaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Govindaraju, D. (2015). Evolutionary Genetic Bases of Longevity and Senescence. In: Atzmon, PhD, G. (eds) Longevity Genes. Advances in Experimental Medicine and Biology, vol 847. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2404-2_1

Download citation

Publish with us

Policies and ethics