Skip to main content

Laboratory Methods for Investigating Nuclear and Cytoplasmic Genomes and Transcriptome

  • Chapter
  • First Online:
Book cover Somatic Genome Manipulation

Abstract

A cell usually has several categories of DNA. For example, the widely used Agrobacterium tumefaciens system used for plant genetic transformation has a large plasmid called a tumor-inducing (Ti) plasmid or helper Ti plasmid and a much smaller binary vector plasmid. A plant cell usually has nuclear, plastidic (chloroplast, amyloplast, and others), and mitochondrial genomes. Depending on the research objectives, such as organelle genome sequencing, it is often necessary to extract DNA and RNA separately from these different organelles or DNA macromolecules. Various laboratory approaches are also often required for validating microarray or second-generation sequencing results. This chapter describes the following 11 techniques: (1) in situ hybridization for studying tissue-specific gene expression, (2) mitochondrial visualization using rhodamine staining and confocal microscopy, (3) using polarized microscope in observing starch granules without staining, (4) differential preparation of Agrobacterium Ti plasmid and binary plasmid using a noncommercial kit, (5) isolation of nuclei for DNA preparation, (6) chloroplast DNA extraction, (7) mitochondrial DNA extraction, (8) total DNA/RNA preparation, (9) enriched mitochondrial RNA preparation, (10) high-resolution DNA melting analysis for studying gene expression, and (11) transcriptome electrophoretic fingerprinting. Most of the protocols are directly usable. If a protocol is very long such as the in situ hybridization protocol or highly dependent on a manual for specialized equipment such as the confocal microscope, the chapter provides a general description of the methods and discusses the aspects critical for resolution. In addition to their use in somatic genome research, these protocols can be useful in training students and new researchers in basic molecular biology techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bimboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  Google Scholar 

  • Brennicke A, Grohmann L, Hiesel R, Knoop V, Schuster W (1993) The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants. FEBS Lett 325:140–145

    Article  CAS  PubMed  Google Scholar 

  • Chase CD, Pring DR (1985) Circular plasmid DNAs from mitochondria of Sorghum bicolor. Plant Mol Biol 5:303–311

    Article  CAS  PubMed  Google Scholar 

  • Chazotte B (2011) Labeling mitochondria with rhodamine 123. Cold Spring Harb Protoc 6:892–894

    Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A 71:3672–3676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho MH, Ciulla D, Klanderman BJ, Raby BA, Silverman EK (2008) High-resolution melting curve analysis of genomic and whole-genome amplified DNA. Clin Chem 54:2055–2058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Currier TC, Nester EW (1976) Isolation of covalently closed circular DNA of high molecular weight from bacteria. Anal Biochem 76:431–441

    Article  CAS  PubMed  Google Scholar 

  • Day J (1997) Isolation of nuclear, chloroplast and mitochondrial DNA from plants. Biochem Edu 25:41–43

    Article  CAS  Google Scholar 

  • Dewey RE, Levings Iii CS, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C, Sessions A (2008) Nonradioactive in situ hybridization of RNA probes to sections of plant tissues. Cold Spring Harb Protoc 3. doi:10.1101/pdb.prot4943

    Google Scholar 

  • Finnegan PM, Brown GG (1986) Autonomously replicating RNA in mitochondria of maize plants with S-type cytoplasm. Proc Natl Acad Sci U S A 83:5175–5179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gambier RM, Mulcahy DL (1994) Confocal laser scanning microscopy of mitochondria within microspore tetrads of plants using rhodamine 123 as a fluorescent vital stain. Biotech Histochem 69:311–316

    Article  CAS  PubMed  Google Scholar 

  • Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA (2013) In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 83:72–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez S, Sanchez M, Guzman P, Simpson J (1996) Isolation of high molecular weight DNA from plant nuclei. Methods Mol Cell Biol 5:349–352

    Google Scholar 

  • Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV (2006) Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 52:494–503

    Article  CAS  PubMed  Google Scholar 

  • Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  PubMed  Google Scholar 

  • Honda SI, Hongladarom T, Laties GG (1966) A new isolation medium for plant organelles. J Exp Bot 17:460–472

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hooykaas PJJ (1989) Transformation of plant cells via Agrobacterium. Plant Mol Biol 13:327–336

    Article  CAS  PubMed  Google Scholar 

  • Huguet T, Jouanin L, Bazetoux S (1975) Occurrence of palindromic sequences in wheat DNA. Plant Science Letters 5:379–385

    Article  CAS  Google Scholar 

  • Karamian R, Ranjbar M (2008) Plant regeneration from Onobrychis subnitens Bornm. hypocotyl explants via somatic embryogenesis and organogenesis. Acta Biol Cracov Ser Bot 50:13–18

    Google Scholar 

  • Kemble RJ (1987) A rapid, single leaf, nucleic acid assay for determining the cytoplasmic organelle complement of rapeseed and related Brassica species. Theor Appl Genet 73:364–370

    Article  CAS  PubMed  Google Scholar 

  • Kiss T, Solymosy F (1987) Isolation of high molecular weight plant nuclear DNA suitable for use in recombinant DNA technology. Acta Biochim Biophysic Hung 22:1–5

    CAS  Google Scholar 

  • Kolodner R, Tewari KK (1972) Physicochemical characterization of mitochondrial DNA from pea leaves. Proc Natl Acad Sci U S A 69:1830–1834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kolodner R, Tewari KK (1975) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402:372–390

    Article  CAS  PubMed  Google Scholar 

  • Langdale J (2001) In situ hybridization protocol. Oxford. p. http://www.plants.ox.ac.uk/langdalelab/protocols/histology/in_site_hyb_general.pdf

  • L’Homme Y, Stahl RJ, Li XQ, Hameed A, Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS- associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Li X-Q (2014) Bioinformatic approaches for analysis of gene direction, chromosome base composition, mRNA polyadenylation, and protein network. In: Li X-Q, Donnelly D, Jensen TG (eds) Somatic genome manipulation: advances, methods and applications. Springer, New York (In Press)

    Google Scholar 

  • Li XQ, Demarly Y (1996) Somatic embryogenesis and plant regeneration in. Medicago suffruticosa. Plant Cell Tiss Org Cult 44:79–81

    Article  CAS  Google Scholar 

  • Li XQ, Liu CN, Ritchie SW, Peng J, Gelvin SB, Hodges TK (1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol Biol 20:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Stahl R, Brown GG (1995) Rapid micropreps and minipreps of Ti plasmids and binary vectors from Agrobacterium tumefaciens. Transgenic Res 4:349–351

    Article  CAS  Google Scholar 

  • Li XQ, Zhang M, Brown GG (1996) Cell-specific expression of mitochondrial transcripts in maize seedlings. Plant Cell 8:1961–1975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XQ, Jean M, Landry BS, Brown GG (1998) Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci U S A 95:10032–10037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li X-Q, Zhang J, Luo S, Liu G, Murphy A, Leclerc Y, Xing T (2011) Effects of sampling methods on starch granule size measurement of potato tubers under a light microscope. Int J Plant Biol 2:e5

    Article  Google Scholar 

  • Liew M, Wittwer C, Voelkerding KV (2010) Nucleotide extension genotyping by high-resolution melting. J Mol Diagn 12:731–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu CN, Li XQ, Gelvin SB (1992) Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol Biol 20:1071–1087

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim YJ, Müller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23:3654–3670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lochlainn ST, Amoah S, Graham NS, Alamer K, Rios JJ, Kurup S, Stoute A, Hammond JP, Østergaard L, King GJ, White PJ, Broadley MR (2011) High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods 7:43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lutz KA, Wang W, Zdepski A, Michael TP (2011) Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. BMC Biotechnol 11:54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin M, Tomás R, Cruz Izquierdo M, Prádanos C, Sabater B (1989) Preparation of chloroplast DNA from barley and lettuce and comparison of restriction fragments. Biol Plant 31:67–71

    Article  CAS  Google Scholar 

  • Mehle N, Nikolić P, Rupar M, Boben J, Ravnikar M, Dermastia M (2013) Automated DNA extraction for large numbers of plant samples. Methods Mol Biol 938:139–145

    Article  CAS  PubMed  Google Scholar 

  • Meyerowitz EM (1987) In situ hybridization to RNA in plant tissue. Plant Mol Biol Rep 5:242–250

    Article  CAS  Google Scholar 

  • Mileshina D, K. NA, Weber-Lotfi F, Gualberto J, Dietrich A (2014) Mitochondrial genetic manipulation. In: X-Q Li X-Q, D Donnelly D, TG Jensen TG, (eds)editors. Somatic genome manipulation: advances, methods and applications. Springer, New York (In Press)

    Google Scholar 

  • Mourad G, Polacco ML (1988) Mini-preparation of highly purified chloroplast DNA from maize. Plant Mol Biol Rep 6:193–199

    Article  CAS  Google Scholar 

  • Mourad G, Polacco ML (1989) Mini-preparation of highly purified chloroplast DNA from maize. Plant Mol Biol Rep 7:78–84

    Article  CAS  Google Scholar 

  • Nakagawa K, Uehara H, Hosaka K (2000) Chloroplast DNA variation in the wild potato species, Solanum acaule and S. albicans. Euphytica 116:197–202

    Article  CAS  Google Scholar 

  • Nassar AMK, Kubow S, Donnelly DJ (2014) Somatic embryogenesis for potato (Solanum tuberosum L.) improvement. In: Li X-Q, Donnelly D, Jensen TG (eds) Somatic genome manipulation: advances, methods and applications. Springer, New York (In Press)

    Google Scholar 

  • Pelletier G, Budar F (2014) Brassica Ogu-INRA cytoplasmic male sterility: an example of successful plant somatic fusion for hybrid seed production. In: Li X-Q, Donnelly D, Jensen TG (eds) Somatic genome manipulation: advances, methods and applications. Springer, New York (In Press)

    Google Scholar 

  • Pérez C, Bonavent JF, Bervillé A (1990) Preparation of mitochondrial DNAs from sunflowers (Helianthus annuus L.) and from beets (Beta vulgaris) using a medium with a high ionic strength. Plant Mol Biol Rep 8:104–113

    Article  Google Scholar 

  • Petit PX (1992) Flow cytometric analysis of rhodamine 123 fluorescence during modulation of the membrane potential in plant mitochondria. Plant Physiol 98:279–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qu H, Ma F, Li Q (2008) Comparative analysis of mitochondrial fragments transferred to the nucleus in vertebrate. J Genet Genom 35:485–490

    Article  Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technology 8:33–38

    Article  CAS  Google Scholar 

  • Refsgaard L, Olesen MS, Møller DV, Christiansen M, Haunsø S, Svendsen JH, Christensen AH (2012) Mutation analysis of the candidate genes SCN1B-4B, FHL1, and LMNA in patients with arrhythmogenic right ventricular cardiomyopathy. ApplTransl Genom 1:44–46

    CAS  Google Scholar 

  • Ritchie SW, Lui CN, Sellmer JC, Kononowicz H, Hodges TK, Gelvin SB (1993) Agrobacterium tumefaciens-mediated expression of gusA in maize tissues. Transgenic Res 2:252–265

    Article  CAS  Google Scholar 

  • Roche (2008) DIG application manual for nonradioactive in situ hybridization, 4th edn. http://www.roche-applied-science.com/wcsstore/RASCatalogAssetStore/Articles/05353122001_05353122008.05353122008.pdf, 05353122214 pages

  • Rokka V-M (2014) Protoplast technology in genome manipulation of potato through somatic cell fusion. In: Li X-Q, Donnelly D, Jensen TG (eds) Somatic genome manipulation: advances, methods and applications. Springer, New York (In Press)

    Google Scholar 

  • Rousseau-Gueutin M, Ayliffe MA, Timmis JN (2011) Conservation of plastid sequences in the plant nuclear genome for millions of years facilitates endosymbiotic evolution. Plant Physiol 157:2181–2193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santalucia JJ (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest- neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sciaky D, Montoya AL, Chilton MD (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1:238–253

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Hu N, Huang H, Gao J, Zhao YJ, Gao LZ (2012) An improved chloroplast DNA extraction procedure for whole plastid genome sequencing. PLoS ONE 7:e31468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shoemaker RC, Palmer RG, Atherly AG (1984) Preparation of chloroplast DNA-enriched DNA samples from soybean. Plant Mol Biol Rep 2:15–20

    Article  CAS  Google Scholar 

  • Sikorskaite S, Rajamäki ML, Baniulis D, Stanys V, Valkonen JPT (2013) Protocol: optimised methodology for isolation of nuclei from leaves of species in the Solanaceae and Rosaceae families. Plant Methods 9:31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh M, Brown GG (1991) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell 3:1349–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh M, Hamel N, Menassa R, Li XQ, Young B, Jean M, Landry BS, Brown GG (1996) Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics 143:505–516

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slusarenko AJ (1990) A rapid miniprep for the isolation of total DNA from Agrobacterium tumefaciens. Plant Mol Biol Rep 8:249–252

    Article  CAS  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15:16–21

    Article  CAS  Google Scholar 

  • Traas J (2008) Whole-mount in situ hybridization of RNA probes to plant tissues. Cold Spring Harbor Protocols 3. doi:10.1101/pdb.prot4944.

    Google Scholar 

  • Ulrich I, Ulrich W (1991) High-resolution flow cytometry of nuclear DNA in higher plants. Protoplasma 165:212–215

    Article  Google Scholar 

  • Valach M, Tomaska L, Nosek J (2008) Preparation of yeast mitochondrial DNA for direct sequence analysis. Curr Genet 54:105–109

    Article  CAS  PubMed  Google Scholar 

  • Vedel F, Mathieu C (1983) Physical and gene mapping of chloroplast DNA from normal and cytoplasmic male sterile (radish cytoplasm) lines of. Brassica napus. Curr Genet 7:13–20

    Article  CAS  PubMed  Google Scholar 

  • Wang CN, Chen YJ, Chang YC, Wu CH (2008) A step-by-step optimization guide for applying tissue specific RNA in-situ hybridization to non-model plant species. Taiwania 53:383–393

    Google Scholar 

  • Willmitzer L, Wagner KG (1981) The isolation of nuclei from tissue-cultured plant cells. Exp Cell Res 135:69–77

    Article  CAS  PubMed  Google Scholar 

  • Wilson AJ, Chourey PS (1984) A rapid inexpensive method for the isolation of restrictable mitochondrial DNA from various plant sources. Plant Cell Rep 3:237–239

    Article  CAS  PubMed  Google Scholar 

  • Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    CAS  PubMed  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Song Y, Li Z, Wu Z, Han J, Han S (2012) Covalent labeling of mitochondria with a photostable fluorescent thiol-reactive rhodamine-based probe. Anal Methods 4:1699–1703

    Article  CAS  Google Scholar 

  • Yuan J, Haroon M, Lightfoot D, Pelletier Y, Liu Q, Li XQ (2009) A high-resolution melting approach for analyzing allelic expression dynamics. Curr Issues Mol Biol 11 (Suppl. 1):i1–9.

    CAS  PubMed  Google Scholar 

  • Zhang J, Murphy A, Liu G, Bizimungu B, Liu Q, Leclerc Y, Xing T, Li XQ (2011a) Starch granule size variation and relationship with tuber dry matter content in heritage potato varieties. Sci Hort 130:503–509

    Article  Google Scholar 

  • Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG (2011b) Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant. Plant Mol Biol 76:187–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Mr. Muhammad Haroon of Agriculture and Agri-Food Canada for verification of the agrobacterial prep methods and Professor Danielle Donnelly of McGill University for editing the chapter. Part of the work was conducted in the Laboratoire d’Amélioration des Plantes (Professeur Yves Demarly) de la Université de Paris-Sud-XI, the Laboratoire de Génétique Moléculaire des Plantes (Dr. Fernand Vedel) du Centre National de la Recherche Scientifique de France (name of lab head), the Departments of Botany and Plant Pathology (Professor Thomas K. Hodges) and Biological Sciences (Professor Stanton B. Gelvin) of Purdue University, and the Department of Biology of McGill University (Professor Gregory G. Brown). All the remaining parts were conducted in the author’s laboratory (Cell Biotechnology) at the Department of Biology of Peking University and the authors’ laboratory (Molecular Genetics) at the Potato Research Centre of Agriculture and Agri-Food Canada, Fredericton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Qing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, XQ. (2015). Laboratory Methods for Investigating Nuclear and Cytoplasmic Genomes and Transcriptome. In: Li, XQ., Donnelly, D., Jensen, T. (eds) Somatic Genome Manipulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2389-2_14

Download citation

Publish with us

Policies and ethics