Population Epigenetics

  • Christy M. FoustEmail author
  • Aaron W. Schrey
  • Christina L. Richards


Epigenetics is the study of molecular-level mechanisms resulting in heritable changes in phenotype not due to DNA sequence changes. Epigenetic variation can change in response to environmental conditions, which allows for the examination of within-generation environmental response. This is one reason epigenetics could lend new insight into population-level processes. Population-level studies are currently rare, but because environment can affect phenotype we must show that findings from controlled epigenetic systems matter in natural populations. In this chapter, we emphasize studies in nonmodel organisms and in natural populations examining epigenetic response to ecological conditions. Future studies should incorporate experimental validation of stable versus induced epigenetic changes and modification of current statistical approaches.


Ecological epigenetics Plasticity Habitat differentiation Population genetics Epigenetic inheritance Epigenetic variation 


  1. 1.
    Lewontin RC. The genetic basis of evolutionary change. West Sussex: Columbia University Press; 1974.Google Scholar
  2. 2.
    Pigliucci M. Do we need an extended evolutionary synthesis? Evolution 2007;61:2743–49.CrossRefPubMedGoogle Scholar
  3. 3.
    Hartl DL, Jones EW. Essential genetics. 2nd ed. Sudbury: Jones and Bartlett; 1999.Google Scholar
  4. 4.
    Jablonka E, Lamb MJ. The epigenome in evolution: beyond the modern synthesis. VOGis Herald 2008;12:242–54.Google Scholar
  5. 5.
    Pigliucci M, Müller GB. Evolution – the extended synthesis. Cambridge: MIT Press; 2010.CrossRefGoogle Scholar
  6. 6.
    Jablonka E, Lamb MJ. Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic. Cambridge: MIT Press; 2005.Google Scholar
  7. 7.
    Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009;84:131–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Richards EJ. Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet. 2006;7:395–401.CrossRefPubMedGoogle Scholar
  9. 9.
    Richards EJ. Population epigenetics. Curr Opin Genet Dev. 2008;18:221–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Grandjean V, Yaman R, Cuzin F, Rassoulzadegan M. Inheritance of an epigenetic mark: the CpG DNA methyltransferase 1 is required for de novo establishment of complex patterns of non-CpG methylation. PLoS One. 2007;11:e1136.CrossRefGoogle Scholar
  11. 11.
    Johannes F, Porcher E, Teixeira FK, Saliba-Combani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillman C, Guerche P, Hospital F, Colot V. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;6:e1000530.CrossRefGoogle Scholar
  12. 12.
    Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 1999;401:157–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Bollati V, Baccarelli A. Environmental epigenetics. Heredity. 2010;105:105–12.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185:1108–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol. 2010;19:1283–95.CrossRefPubMedGoogle Scholar
  16. 16.
    Pál C. Plasticity, memory, and the adaptive landscape of the genotype. Proc R Soc Lond Biol. 1998;265:1319–23.CrossRefGoogle Scholar
  17. 17.
    Pál C, Miklós I. Epigenetic inheritance, genetic assimilation, and speciation. J Theor Biol. 1999;200:19–37.CrossRefPubMedGoogle Scholar
  18. 18.
    Bonduriansky R, Day T. Non-genetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst. 2009;40:103–25.CrossRefGoogle Scholar
  19. 19.
    Klironomos FD, Berg J, Collins S. How epigenetic mutations can affect genetic evolution: model and mechanism. BioEssays. 2013;35:571–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Geoghegan JL, Spencer HG. Population-epigenetic models of selection. Theor Pop Biol. 2012;81:232–42.CrossRefGoogle Scholar
  21. 21.
    Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563–65.CrossRefGoogle Scholar
  22. 22.
    Waddington CH. Genetic assimilation of an acquired character. Evolution. 1953;7:118–26.CrossRefGoogle Scholar
  23. 23.
    Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann NY Acad Sci. 2002;981:82–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Holliday R. Epigenetics: a historical review. Epigenetics. 2006;1:76–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Holliday R. Epigenetics: an overview. Dev Genet. 1994;15:453–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11:106–15.PubMedGoogle Scholar
  28. 28.
    Hallgrímsson B, Hall BK, editors. Epigenetics: linking genotype and phenotype in development and evolution. Berkeley: University of California Press; 2011.Google Scholar
  29. 29.
    Ho DH, Burggren WW. Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol. 2010;213:3–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Kovalchuk I. Transgenerational epigenetic inheritance in animals. Front Genet. 2012;3:1–2.CrossRefGoogle Scholar
  31. 31.
    Ledón-Rettig CC, Richards CL, Martin LB. Epigenetics for behavioral ecologists. Behav Ecol. 2013;24:311–24.CrossRefGoogle Scholar
  32. 32.
    Kilvitis H, Alvarez M, Foust CM, Robertson M, Schrey AW, Richards CL. Ecological epigenetics. In Landry C, Aubin-Horth N, editors. Ecological and evolutionary genomics. Dordrecht: Springer; 2014.Google Scholar
  33. 33.
    Schrey AW, Alvarez M, Foust CM, Kilvitis HJ, Lee JD, Liebl AL, Martin LB, Richards CL, Robertson M. Ecological epigenetics: beyond MS-AFLP. Integr Comp Biol. 2013;53:340–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Rapp RA, Wendel JF. Epigenetics and plant evolution. New Phytol. 2005;168:81–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.CrossRefPubMedGoogle Scholar
  36. 36.
    Jablonka E, Lamb MJ. The evolution of information in the major transitions. J Theor Biol. 2006;239:236–46.CrossRefPubMedGoogle Scholar
  37. 37.
    Herrera CM, Pozo MI, Bazaga P. Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol. 2012;21:2602–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Herrera CM, Medrano M, Bazaga P. Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae). PLoS One. 2013;7:e70730.CrossRefGoogle Scholar
  39. 39.
    Herrera CM, Bazaga P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot J Linean Soc. 2013;171:441–52.CrossRefGoogle Scholar
  40. 40.
    Richards CL, Schrey AW, Pigliucci M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett. 2012;15:1016–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Herrera CM, Bazaga P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 2010;187:867–76.CrossRefPubMedGoogle Scholar
  42. 42.
    Massicotte R, Whitelaw E, Angers B. DNA methylation: a source of random variation in natural populations. Epigenetics. 2011;6:421–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Schrey AW, Coon CAC, Grispo MT, Awad M, Imboma T, McCoy ED, Mushinsky HR, Richards CL, Martin LB. Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house sparrows (Passer domesticus) on two continents. Genet Res Int. 2012;2012:1–7.Google Scholar
  44. 44.
    Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480:245–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR. Patterns of population epigenomic diversity. Nature. 2013;495:193–8.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Bossdorf O, Richards CL, Pigliucci M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol. 2010;24:541–53.CrossRefGoogle Scholar
  47. 47.
    Supnick M. On the function of leaf spines in Ilex opaca. Bull Torrey Bot Club. 1983;110:228–30.CrossRefGoogle Scholar
  48. 48.
    Potter DA, Kimmerer TW. Do holly leaf spines really deter herbivory? Oecologia 1988;75:216–21.CrossRefGoogle Scholar
  49. 49.
    Obeso JR. The induction of spinescence in European holly leaves by browsing ungulates. Plant Ecol 1997;129:149–56.CrossRefGoogle Scholar
  50. 50.
    Lira-Medeiros, CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One. 2010;5:e10326.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Vergreer P, Wagemaker NCAM, Ouborg NJ. Evidence for an epigenetic role in inbreeding depression. Biol Lett. 2012;8:798–801.CrossRefGoogle Scholar
  52. 52.
    Anderson TR. Biology of the ubiquitous house sparrow: from genes to populations. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  53. 53.
    Schrey AW, Grispo M, Awad M, Cook MB, McCoy ED, Mushinsky HR, Albayrak T, Bensch S, Burke T, Butler LK, Dor R, Fokidis HB, Jensen H, Imboma T, Kessler-Rios MM, Marzal A, Stewart IRK, Westerdahl H, Westneat DF, Zehtindjiev P, Martin LB. Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Mol Ecol. 2011;20:1133–43.CrossRefPubMedGoogle Scholar
  54. 54.
    Liebl AL, Schrey AW, Richards CL, Martin LB. Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr Comp Biol. 2013;53:351–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Genereux DP, Miner BE, Bergstrom CT, Laird CD. A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns. Proc Natl Acad Sci. 2005;16:5802–07.CrossRefGoogle Scholar
  56. 56.
    Reinders J, Wulff BH, Mirouze M, Marí-Ordóñez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 2009;23:939–50.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Cortijo S, Wardenaar R, Tatché MC, Gilly A, Etcheverny M, Labaclie K, Caillieux E, Hospital F, Aury JM, Wincker P, Roudier F, Jansen RC, Colot V, Johannes F. Mapping the transgenerational epigenetic basis for complex traits. Science. 2014;343:1045–1048.Google Scholar
  58. 58.
    Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet. 2010;6:e1000940.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Atwel, S, Huang YS, Vilhja´lmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465:627–31.CrossRefGoogle Scholar
  60. 60.
    Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst. 2004;35:375–403.CrossRefGoogle Scholar
  61. 61.
    Day T, Bonduriansky R. A unified approach to the evolutionary consequences of genetic and non-genetic inheritance. Am Nat. 2011;178:E18–36.CrossRefPubMedGoogle Scholar
  62. 62.
    West-Eberhard MJ. Developmental plasticity and the origin of species differences. Proc Natl Acad Sci. 2005;102:6543–9.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Duckworth RA. Epigenetic inheritance systems act as a bridge between ecological and evolutionary timescales. Behav Ecol. 2013;24:327–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christy M. Foust
    • 1
    Email author
  • Aaron W. Schrey
    • 2
  • Christina L. Richards
    • 1
  1. 1.Department of Integrative BiologyUniversity of South FloridaTampaUSA
  2. 2.Department of BiologyArmstrong State UniversitySavannahUSA

Personalised recommendations