Skip to main content

Epigenetic Modifications at Developmental Transitions in Arabidopsis

  • Chapter
  • First Online:
  • 844 Accesses

Abstract

Plants undergo multiple developmental transitions during their life cycle and most of them are accompanied by various changes in the chromatin landscape, enabling global transcriptional modifications. Three major types of chromatin features, DNA methylation, histone modifications, and replacement of histone variants, act in concert to regulate chromatin accessibility and transcription. All three types of chromatin features have been found to dynamically accompany developmental and transcriptional transitions in plants and we discuss how they are coordinated and what mechanisms connect chromatin with transcription during key steps of plant development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133(3):523–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol. 2014;21(1):64–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152(1–2):352–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Tran RK, Henikoff JG, Zilberman D, Ditt RF, Jacobsen SE, Henikoff S. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol. 2005;15(2):154–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 2007;5(5):e129.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell. 2006;126(6):1189–201.

    Article  CAS  PubMed  Google Scholar 

  8. Coleman-Derr D, Zilberman D. DNA methylation, H2A.Z, and the regulation of constitutive expression. Cold Spring Harb Symp Quant Biol. 2012;77:147–54.

    Article  CAS  PubMed  Google Scholar 

  9. Saze H, Kakutani T. Differentiation of epigenetic modifications between transposons and genes. Curr Opin Plant Biol. 2011;14(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  10. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  11. Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 2011;30(10):1928–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  CAS  PubMed  Google Scholar 

  13. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006;8(5):532–8.

    Article  CAS  PubMed  Google Scholar 

  14. Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL, et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin. 2012;5:7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Volle C, Dalal Y. Histone variants: the tricksters of the chromatin world. Curr Opin Genet Dev. 2014;25:8–14.

    Article  CAS  PubMed  Google Scholar 

  16. Ingouff M, Berger F. Histone3 variants in plants. Chromosoma. 2010;119(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  17. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature. 2008;456(7218):125–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Coleman-Derr D, Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet. 2012;8(10):e1002988.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140(1):136–47.

    Article  CAS  PubMed  Google Scholar 

  20. Okada T, Endo M, Singh MB, Bhalla PL. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J. 2005;44(4):557–68.

    Article  CAS  PubMed  Google Scholar 

  21. Stroud H, Otero S, Desvoyes B, Ramirez-Parra E, Jacobsen SE, Gutierrez C. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2012;109(14):5370–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wollmann H, Holec S, Alden K, Clarke ND, Jacques PE, Berger F. Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genet. 2012;8(5):e1002658.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ingouff M, Rademacher S, Holec S, Soljic L, Xin N, Readshaw A, et al. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol. 2010;20(23):2137–43.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad K, Henikoff S. Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A. 2002;99 (Suppl 4):16477–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schwartz BE, Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 2005;19(7):804–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004;116(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  27. Ooi SL, Priess JR, Henikoff S. Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet. 2006;2(6):e97.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010;140(5):678–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, et al. Dynamics of histone H3 deposition in vivo reveal a n chromatin integrity. Mol Cell. 2011;44(6):928–41.

    Article  CAS  PubMed  Google Scholar 

  30. Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F. Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol. 2007;17(12):1032–7.

    Article  CAS  PubMed  Google Scholar 

  31. Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 2002;14(5):1053–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. To TK, Kim JM. Epigenetic regulation of gene responsiveness in Arabidopsis. Front Plant Sci. 2014;4:548.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Aceituno FF, Moseyko N, Rhee SY, Gutierrez RA. The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genomics. 2008;9:438.

    Article  PubMed Central  PubMed  Google Scholar 

  34. March-Diaz R, Reyes JC. The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant. 2009;2(4):565–77.

    Article  CAS  PubMed  Google Scholar 

  35. Deal RB, Kandasamy MK, McKinney EC, Meagher RB. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. Plant Cell. 2005;17(10):2633–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Deal RB, Topp CN, McKinney EC, Meagher RB. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell. 2007;19(1):74–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. March-Diaz R, Garcia-Dominguez M, Florencio FJ, Reyes JC. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol. 2007;143(2):893–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484(7393):242–5.

    Article  CAS  PubMed  Google Scholar 

  39. March-Diaz R, Garcia-Dominguez M, Lozano-Juste J, Leon J, Florencio FJ, Reyes JC. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J. 2008;53(3):475–87.

    Article  CAS  PubMed  Google Scholar 

  40. Smith AP, Jain A, Deal RB, Nagarajan VK, Poling MD, Raghothama KG, et al. Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator. Plant Physiol. 2010;152(1):217–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wollmann H, Berger F. Epigenetic reprogramming during plant reproduction and seed development. Curr Opin Plant Biol. 2012;15(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  42. Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science. 2009;324(5933):1447–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, et al. Genome-wide demethylation of Arabidopsis endosperm. Science. 2009;324(5933):1451–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136(3):461–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, et al. Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A. 2010;107(43):18729–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gehring M, Missirian V, Henikoff S. Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS One. 2011;6(8):e23687.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, et al. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A. 2011;108(5):1755–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S, et al. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet. 2011;7(6):e1002125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MT, et al. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis Endosperm. PLoS Genet. 2011;7(6):e1002126.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Li J, Berger F. Endosperm: food for humankind and fodder for scientific discoveries. New Phytol. 2012;195(2):290–305.

    Article  PubMed  Google Scholar 

  51. Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR. Dynamics and memory of heterochromatin in living cells. Cell. 2012;149(7):1447–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zheng B, Chen X. Dynamics of histone H3 lysine 27 trimethylation in plant development. Curr Opin Plant Biol. 2011;14(2):123–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Simon JA, Kingston RE. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell. 2013;49(5):808–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Holec S, Berger F. Polycomb group complexes mediate developmental transitions in plants. Plant Physiol. 2012;158(1):35–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet. 2011;7(4):e1002040.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ingouff M, Haseloff J, Berger F. Polycomb group genes control developmental timing of endosperm. Plant J. 2005;42(5):663–74.

    Article  CAS  PubMed  Google Scholar 

  57. Muller K, Bouyer D, Schnittger A, Kermode AR. Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS ONE. 2012;7(12):e51532.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, et al. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. 2011;7(3):e1002014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Molitor AM, Bu Z, Yu Y, Shen WH. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet. 2014;10(1):e1004091.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Song J, Angel A, Howard M, Dean C. Vernalization–a cold-induced epigenetic switch. J Cell Sci. 2012;125(Pt 16):3723–31.

    Article  CAS  PubMed  Google Scholar 

  61. Sun B, Ito T. Floral stem cells: from dynamic balance towards termination. Biochem Soc Trans. 2010;38(2):613–6.

    Article  CAS  PubMed  Google Scholar 

  62. Sun B, Looi LS, Guo S, He Z, Gan ES, Huang J, et al. Timing mechanism dependent on cell division is invoked by polycomb eviction in plant stem cells. Science. 2014;343(6170):1248559.

    Article  PubMed  Google Scholar 

  63. Sun B, Xu Y, Ng KH, Ito T. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 2009;23(15):1791–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. He C, Chen X, Huang H, Xu L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet. 2012;8(8):e1002911.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T, et al. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci U S A. 2009;106(38):16321–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N. Regulation of stem cell maintenance by the polycomb protein FIE has been conserved during land plant evolution. Development. 2009;136(14):2433–44.

    Article  CAS  PubMed  Google Scholar 

  67. Lu F, Cui X, Zhang S, Jenuwein T, Cao X. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet. 2011;43(7):715–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wollmann, H., Berger, F. (2015). Epigenetic Modifications at Developmental Transitions in Arabidopsis . In: Pontes, O., Jin, H. (eds) Nuclear Functions in Plant Transcription, Signaling and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2386-1_7

Download citation

Publish with us

Policies and ethics