Role of Epigenetic Modifications in Plant Responses to Environmental Stresses

  • Xuncheng Liu
  • Ming Luo
  • Songguang Yang
  • Keqiang WuEmail author


Plants encounter various environmental stresses during their life cycle and have evolved intricate mechanisms to perceive the external signals and respond accordingly. The ability of epigenetic status to alter rapidly and reversibly is a key component in plant responses to the environment. The involvement of epigenetic mechanisms in the response to different types of environmental stresses has been documented. Recent studies have shown that the molecular mechanisms driving the responses of plants to environmental stresses often depend on epigenetic changes including DNA methylation, histone modifications and chromatin remodelling. Understanding how epigenetic mechanisms are involved in plant responses to environmental stresses will contribute significantly to our understanding of the molecular mechanisms underlying plant epigenetic regulation, which may ultimately be applicable to improve agricultural productivity.


Chromatin remodelling Epigenetic modifications Abiotic stress Arabidopsis 


  1. 1.
    Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environ Mol Mutagen. 2008;49:61–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen L, Luo M, Wang Y, Wu K. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot. 2010;61:3345–53.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ. 2010;33:604–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere. 2004;54:1049–58.CrossRefPubMedGoogle Scholar
  6. 6.
    Wada Y, Miyamoto K, Kusano T, Sano H. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genom. 2004;271:658–66.CrossRefGoogle Scholar
  7. 7.
    Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 2002;4:694–9.CrossRefGoogle Scholar
  8. 8.
    Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M. Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta. 2007;227:245–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M. Alterations of lysine modifications on the histone H3N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol. 2008;49:1580–8.CrossRefPubMedGoogle Scholar
  10. 10.
    van Dijk K, Ding Y, Malkaram S, Riethoven JJ, Liu R, Yang J, Laczko P, Chen H, Xia Y, Ladunga I, Avramova Z, Fromm M. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol. 2010;10:238. doi:10.1186/1471-2229-10-238.Google Scholar
  11. 11.
    Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol. 2006;47:995–1003.CrossRefPubMedGoogle Scholar
  12. 12.
    Zong W, Zhong X, You J, Xiong L. Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol. 2012;81:175–88.CrossRefPubMedGoogle Scholar
  13. 13.
    Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem. 2002;277:37741–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Hu Y, Zhang L, Zhao L, Li J, He S, Zhou K, Yang F, Huang M, Jiang L, Li L. Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS ONE. 2011;6:e22132.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002:30:5036–55.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Liu X, Luo M, Zhang W, Zhao J, Zhang J, Wu K, Tian L, Duan J. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 2012;12:145. doi:10.1186/1471-2229-12-145.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res. 2001;29:1524–33.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE. Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta. 2011;233:749–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Vlachonasios KE, Thomashow MF, Triezenberg SJ. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell. 2003;15:626–38.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Pavangadkar K, Thomashow MF, Triezenberg SJ. Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol. 2010;74:183–200.CrossRefPubMedGoogle Scholar
  21. 21.
    Versées W, De Groeve S, Van Lijsebettens M. Elongator, a conserved multitasking complex? Mol Microbiol. 2010;76:1065–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu JK, Gong Z. Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol. 2006;26:6902–12.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Zhou X, Chen Z, Hua D, Zhou Z, Gong Z. Elongator mediates ABA responses, oxidative stress resistance, and anthocyanin biosynthesis in Arabidopsis. Plant J. 2009;60:79–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Alinsug MV, Yu C-W, Wu K. Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol. 2009;9:37. doi:10.1186/1471-2229-9-37.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Aufsatz W, Mette WF, van der Winden J, Matzke AJM. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J. 2002;21:6832–41.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Earely K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, Neves N, Gross M, Viegas W, Pikaard CS. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 2006;20:1283–93.CrossRefGoogle Scholar
  27. 27.
    Luo M, Yu CW, Chen F, Zhao L, Tian G, X Liu, Cui Y, Yang JY, Wu K. Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genet. 2012;8:e1003114. doi:10.1371/journal.pgen.1003114.Google Scholar
  28. 28.
    Murfett J, Wang X, Hagen G, Guilfoyle TJ. Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell. 2001;13:1047–61.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Probst AV, Fagard M, Proux F, Mourrain P, Boutet S, Earley K, Lawrence RJ, Pikaard CS, Murfett J, Furner I, Vaucheret H, Scheid OM. Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell. 2004;16:1021–34.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Wu K, Zhang L, Zhou C, Yu C, Chaikam V. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot. 2008;59:225–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K. HDA6 interacts with FLD and regulates flowering in Arabidopsis. Plant Physiol. 2011;156:173–84.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Long JA, Ohno C, Smith ZR, Meyerowitz EM. TOPLESS regulates apical embryonic fate in Arabidopsis. Science. 2006;312:1520–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Tian L, Chen ZJ. Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci U S A. 2001;98:200–5.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Tian L, Wang J, Fong MP, Chen M, Cao H, Gelvin SB, Chen ZJ. Genetic control of developmental changes induced by disruption of Arabidopsis histone deacetylase 1 (AtHD1) expression. Genetics. 2003;165:399–409.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Wu K, Malik K, Tian L, Brown D, Miki B. Functional analysis of a RPD3 histone deacetylase homolog in Arabidopsis thaliana. Plant Mol Biol. 2000;44:167–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhou C, Zhang L, Duan J, Miki B, Wu K. Histone deacetylase 19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell. 2005;17:1196–204.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Zhou Y, Tan B, Luo M, Lin Y, Liu C, Chen C, Yu C-Wu, Yang S, Dong S, Ruan J, Yuan L, Zhang Z, Zhao L, Li C, Chen H, Cui Y, Wu K, Huang S. Histone deacetylase 19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell. 2013;25,134–48.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Kim K-C., Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell. 2008;20:2357–71.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Liu X, Chen C, Wang K, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh H, Wu K. Phytochrome interacting factor 3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell. 2013;25:1258–73.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Xu CR, Liu C, Wang YL, Li LC, Chen WQ, Xu ZH, Bai SN. Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proc Natl Acad Sci U S A. 2005;102:14469–74.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Chen L, Wu K. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 2010;5:1318–20.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Luo M, Wang YY, Liu X, Yang S, Lu Q, Cui Y, Wu K. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot. 2012;63:3297–306.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    To TK, Nakaminami K, Kim JM, Morosawa T, Ishida J, Tanaka M, Yokoyama S, Shinozaki K, Seki M. Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun. 2011;406:414–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell. 2005;17:2384–96.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Song CP, Galbraith DW. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol. 2006;60:241–57.CrossRefPubMedGoogle Scholar
  46. 46.
    Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol. 2005;58:585–96.CrossRefPubMedGoogle Scholar
  47. 47.
    Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 2006;46:124–33.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci U S A. 2008;105:4945–50.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Yoon HG, Chan DW, Huang ZQ, Li J, Fondell JD, Qin J, Wong J. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 2003;2:1336–46.CrossRefGoogle Scholar
  50. 50.
    Thorstensen T, Grini PE, Aalen RB. SET domain proteins in plant development. Biochim Biophys Acta. 2011;1809:407–720.CrossRefPubMedGoogle Scholar
  51. 51.
    Ding Y, Lapko H, Ndamukong I, Xia Y, Al-Abdallat A, Lalithambika S, Sadder M, Saleh A, Fromm M, Riethoven JJ, Lu G, Avramova Z. The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM and the response to drought. Plant Signal Behav. 2009;4:1049–58.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Ndamukong I, Jones DR, Lapko H, Divecha N, Avramova Z. Phosphatidylinositol 5-phosphate links dehydration stress to the activity of Arabidopsis trithorax-like factor ATX1. PLoS ONE. 2010;5:e13396. doi:10.1371/journal.pone.0013396.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Hennig L, Bouveret R, Gruissem W. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol. 2005;15:295–302.CrossRefPubMedGoogle Scholar
  54. 54.
    Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development. 2003;130:2555–65.CrossRefPubMedGoogle Scholar
  55. 55.
    Kim H J, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet. 2004;36:167–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Liu C, Lu F, Cui X, Cao X. Histone methylation in higher plants. Annu Rev Plant Biol. 2010;61:395–420.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Li Q, Zhang YE, Xu Y, Xue Y, Chong K, Bao S. Arabidopsis floral Initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell. 2011;3:369–411.Google Scholar
  58. 58.
    Jerzmanowski A. SWI/SNF chromatin remodeling and linker histones in plants. Biochim Biophys Acta. 2007;1769:330–45.CrossRefPubMedGoogle Scholar
  59. 59.
    Racki LR, Narlikar GJ. ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Curr Opin Genet Dev. 2008;18:137–44.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Mlynárová L, Nap JP, Bisseling T. The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J. 2007;51:874–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Han SK, Sang Y, Rodrigues A, Wu MF, Rodriguez PL, Wagner D. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell. 2012;24:4892–906.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL. HAB1–SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell. 2008;20:2972–88.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Perruc E, Kinoshita N, Lopez-Molina L. The role of chromatin remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. Plant J. 2007;52:927–36.CrossRefPubMedGoogle Scholar
  64. 64.
    Dobosy JR, Selker EU. Emerging connections between DNA methylation and histone acetylation. Cell Mol Life Sci. 2001;58:721–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Datta J, Ghoshal K, Sharma SM, Tajima S, Jacob ST. Biochemical fractionation reveals association of DNA methyltransferase (Dnmt) 3b with Dnmt1 and that of Dnmt 3a with a histone methyltransferase and Hdac1. J Cell Biochem. 2003;88:855–64.CrossRefPubMedGoogle Scholar
  66. 66.
    Liu X, Yu CW, Dun J, Luo M, Wang K, Tian G, Cui Y, Wu K. HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable elements silencing in Arabidopsis. Plant Physiol. 2012;158:119–29.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Song Y, Wu K, Dhaubhade S, An L, Tian L. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity. Biochem Biophys Res Commun. 2010;396:187–92.CrossRefPubMedGoogle Scholar
  68. 68.
    Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–20.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Feng S, Jacobsen SE. Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol. 2011;14:179–86.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Lindroth AM, Shultis D, Jasencakova Z, Fuchs J, Johnson L, Schubert D, Patnaik D, Pradhan S, Goodrich J, Schubert I. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with chromomethylase 3. EMBO J. 2004;23:4146–55.CrossRefGoogle Scholar
  71. 71.
    Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, Vashisht AA, Terragni J, Chin HG, Tu A, Hetzel J, Wohlschlegel JA, Pradhan S, Patel DJ, Jacobsen SE. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell. 2012;151:167–80.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Fan D, Dai Y, Wang X, Wang Z, He H, Yang H, Cao Y, Deng XW, Ma L. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis. Nucleic Acids Res. 2012;40:8905–16.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol. 2006;26:6395–402.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 2005;19: 857–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xuncheng Liu
    • 1
  • Ming Luo
    • 2
  • Songguang Yang
    • 1
  • Keqiang Wu
    • 3
    Email author
  1. 1.South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  3. 3.Institute of Plant Biology, College of Life ScienceNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations