Skip to main content

Plasticity of Chromatin Organization in the Plant Interphase Nucleus

Three-Dimensional Organization of the Interphase Nucleus

  • Chapter
  • First Online:
Nuclear Functions in Plant Transcription, Signaling and Development

Abstract

Genomes are organized as chromatin into complex 3D structures in interphase nuclei, and the relation of these structures to gene function is the subject of much current debate and research. In this chapter, we describe key landmarks that have led to our present understanding of interphase nuclear architecture, with particular emphasis on model and crop plants, such as wheat, rice and Arabidopsis. We discuss the significance of the plasticity of interphase chromosome organization in relation to transcriptional state, epigenetic regulation and environmental influences. We describe our current understanding of in vivo chromatin dynamics down to molecular resolution. Finally, we consider the prospects for using an understanding of chromatin organization and behaviour to improve plant performance in challenging environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

3C:

Chromosome conformation capture

5-AC:

5-azacytidine

BAC:

Bacterial artificial chromosome

CTs:

Chromosome territories

BiFC:

Bimolecular fluorescence complementation

BrUTP:

Bromouridine triphosphate

FISH:

Fluorescence in situ hybridization

GFP:

Green fluorescent protein

GISH:

Genomic in situ hybridization

HPT:

Hygromycin phosphotransferase

ISH:

In situ hybridization

lacO :

Lactose operator

NGS:

Next generation sequencing

NOR:

Nucleolus organizing region

SCD:

“Spherical 1-Mb chromatin domain” model

tetO :

Tetracycline operator

TSA:

Trichostatin A

References

  1. Raices M, D’Angelo M. Nuclear pore complex composition: a new regulator of tissue specific and developmental functions. Nat Rev Mol Cell Biol. 2012;13(11):687–99.

    CAS  PubMed  Google Scholar 

  2. Waldeyer W. Über Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen. Arch Mikr Anat. 1888;32:1–122.

    Google Scholar 

  3. Schubert I. Between genes and genomes-future challenges for cytogenetics. Front Genet. 2011;2(30):1–2.

    Google Scholar 

  4. Heitz E. Das Heterochromatin der Moose. I. Jahrb wiss Bot. 1928;69:762–818.

    Google Scholar 

  5. Rabl C. Über Zellteilung. Morphol Jahrb. 1885;10:214–330.

    Google Scholar 

  6. Boveri T. Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. Arch. Zellforch. 1909;3:181–268.

    Google Scholar 

  7. Wischnitzer S. The submicroscopic morphology of the interphase nucleus. Int Rev Cytol. 1973;34:1–48.

    CAS  PubMed  Google Scholar 

  8. Cremer T, Cremer C, Schneider T, Baumann H, Hens L, Kirsch-Volders M. Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet. 1982;62(3):201–9.

    CAS  PubMed  Google Scholar 

  9. Gall JG, Pardue ML. Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A. 1969;63(2):378–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet. 1988;80(3):224–34.

    CAS  PubMed  Google Scholar 

  11. Pinkel D, Gray JW, Trask B, Vanda Engh G, Fuscoe J, Van Dekken H. Cytogenetic analysis by in situ hybridization with fluorescently labelled nucleic acid probes. Cold Spring Harb Symp Quant Biol. 1986;51(1):151–7.

    CAS  PubMed  Google Scholar 

  12. Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schröck E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P. Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol. 1993;58:777–92.

    CAS  PubMed  Google Scholar 

  13. Cremer T, Cremer C. Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem. 2006;50(3):161–76.

    PubMed  Google Scholar 

  14. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2:292–301.

    CAS  PubMed  Google Scholar 

  15. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S. Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol. 2006;18(3):307–16.

    CAS  PubMed  Google Scholar 

  16. Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2:a003889.

    PubMed Central  PubMed  Google Scholar 

  17. Meaburn KJ, Misteli T. Cell biology: chromosome territories. Nature. 2007;445(7126):379–781.

    CAS  PubMed  Google Scholar 

  18. Fuchs J, Houben A, Brandes A, Schubert I. Chromosome “painting” in plants—a feasible technique? Chromosoma. 1996;104(5):315–20.

    CAS  PubMed  Google Scholar 

  19. Visser AE, Aten JA. Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei. J Cell Sci. 1999;112(19):3353–60.

    CAS  PubMed  Google Scholar 

  20. Visser AE, Jaunin F, Fakan S, Aten JA. High resolution analysis of interphase chromosome domains. J Cell Sci. 2000;113(14):2585–93.

    CAS  PubMed  Google Scholar 

  21. Abranches R, Santos AP, Wegel E, Williams S, Castilho A, Christou P, Shaw P, Stoger E. Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J. 2000;24(6):713–23.

    CAS  PubMed  Google Scholar 

  22. Verschure PJ, van der Kraan I, Manders EM, Hoogstraten D, Houtsmuller AB, van Driel R. Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep. 2003;4(9):861–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Branco MR, Pombo A. Intermingling of chromosome territories in interphase suggests a role in translocation and transcription dependent associations. PLoS Biol. 2006;4:38.

    Google Scholar 

  24. Cook PR. A chromomeric model for nuclear and chromosome structure. J Cell Sci. 1995;108(9):2927–35.

    CAS  PubMed  Google Scholar 

  25. Cook PR. The organization of replication and transcription. Science. 1999;284(5421):1790–5.

    CAS  PubMed  Google Scholar 

  26. Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol. 2010;395(1):1–10.

    CAS  PubMed  Google Scholar 

  27. Jackson DA, Hassan AB, Errington RJ, Cook PR. Visualization of focal sites of transcription within human nuclei. EMBO J. 1993;12(3):1059–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Iborra FJ, Pombo A, Jackson DA, Cook PR. Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci. 1996;109(6):1427–36.

    CAS  PubMed  Google Scholar 

  29. Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet. 2007;8(2):104–15.

    PubMed  Google Scholar 

  30. Misteli T. Spatial positioning: a new dimension in genome function. Cell. 2004;119(2):153–6.

    CAS  PubMed  Google Scholar 

  31. Takizawa T, Meaburn KJ, Misteli T. The meaning of gene positioning. Cell. 2008;135(1):9–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996;85(5):745–59.

    CAS  PubMed  Google Scholar 

  33. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 1997;91(6):845–54.

    CAS  PubMed  Google Scholar 

  34. Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell. 1999;3(2):207–17.

    CAS  PubMed  Google Scholar 

  35. Francastel C, Walters MC, Groudine M, Martin DIK. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell. 1999;99(3):259–69.

    CAS  PubMed  Google Scholar 

  36. Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Gene Dev. 2004;18(10):1119–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development. 2005;132(9):2215–23.

    CAS  PubMed  Google Scholar 

  38. Wurtele H, Chartrand P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res. 2006;14(5):477–95.

    PubMed  Google Scholar 

  39. Wit E, Laat W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 2012;26(1):11–24.

    PubMed Central  PubMed  Google Scholar 

  40. O’Sullivan JM, Hendy MD, Pichugina T, Wake GC, Langowski J. The statistical-mechanics of chromosome conformation capture. Nucleus. 2013;4(5):390–8.

    PubMed Central  PubMed  Google Scholar 

  41. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013;14(6):390–403.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell J.A, Lopes S, Reik W. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36(10):1065–71.

    CAS  PubMed  Google Scholar 

  43. Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb17Nf1. Science. 2006;312(5771):269–72.

    CAS  PubMed  Google Scholar 

  44. Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell. 2004;118(5):555–66.

    CAS  PubMed  Google Scholar 

  45. Morey C, Da Silva NR, Perry P, Bickmore WA. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development. 2007;134(5):909–19.

    CAS  PubMed  Google Scholar 

  46. Santos AP, Wegel E, Shaw P, Stoger E, Thompson B, Allen G, Abranches R. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods. 2006;2:18.

    PubMed Central  PubMed  Google Scholar 

  47. Abranches R, Beven AF, Aragón-Alcaide L, Shaw PJ. Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol. 1998;143(1):5–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Santos AP, Abranches R, Stoger E, Beven A, Viegas W. Shaw PJ. The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. J Cell Sci. 2002;115(23):4597–605.

    CAS  PubMed  Google Scholar 

  49. Wegel E, Vallejos RH, Christou P, Stöger E, Shaw P. Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J Cell Sci. 2005;118(11):1021–31.

    CAS  PubMed  Google Scholar 

  50. Wegel E, Koumproglou R, Shaw P, Osbourn A. Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell. 2009;21(12):3926–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. The wheat initiative; 2012. An international vision for wheat improvement. Available from http://www.wheatinitiative.org/. Accessed 16 June 2014.

  52. Khush GS. Harnessing science and technology for sustainable rice-based production systems. Proceedings of FAO rice conference “Rice is life”. Int Rice Comm Newsl. 2004;53:17–23.

    Google Scholar 

  53. Devos KM, Gale MD. Genome relationships: the grass model in current research. Plant Cell. 2000;12(5):637–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Zhang Q, Wing R. Genome studies and molecular genetics: understanding the functional genome based on the rice model. Curr Opin Plant Biol. 2013;16(2):129–32.

    CAS  PubMed  Google Scholar 

  55. Gale MD, Devos KM. Comparative genetics in the grasses. Proc Natl Acad Sci U S A. 1998;95:1971–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Schubert I, Fransz PF, Fuchs J, de Jong JH. Chromosome painting in plants. Methods Cell Sci. 2001;23:57–69.

    CAS  PubMed  Google Scholar 

  57. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. In situ localization of parental genomes in a wide hybrid. Ann Bot. 1989;64(3):315–24.

    Google Scholar 

  58. Schwarzacher T, Anamthawat-Jónsson K, Harrison GE, Islam AKMR, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor App Genet. 1992;84:778–86.

    CAS  Google Scholar 

  59. Islam-Faridi MN, Mujeeb-Kazi A. Visualization of Secale cereale DNA in wheat germplasm by fluorescent in situ hybridization. Theor App Genet. 1995;90(5):595–600.

    Google Scholar 

  60. Morais-Cecilio L, Delgado M, Jones RN, Viegas W. Painting rye B chromosomes in wheat: interphase chromatin organization, nuclear disposition and associations in plants with two, three or four Bs. Chromosome Res. 1996;4(3):1–6.

    Google Scholar 

  61. Rawlins DJ, Shaw PJ. 3-dimensional organization of ribosomal DNA in interphase nuclei of Pisum sativum by in situ hybridization and optical tomography. Chromosoma. 1990;99(2):143–51.

    CAS  Google Scholar 

  62. Aragón-Alcaide L, Beven A, Moore G, Shaw P. The use of vibratome sections of cereal spikelets to study anther development and meiosis. Plant J. 1998;14(4):503–8.

    Google Scholar 

  63. Prieto P, Moore G, Shaw P. Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc. 2007;2(7):1831–8.

    CAS  PubMed  Google Scholar 

  64. Santos AP, Shaw P. Interphase chromosomes and the Rabl configuration: does genome size matter? J Microsc. 2004;214(2):201–6.

    CAS  PubMed  Google Scholar 

  65. Prieto P, Santos AP, Moore G, Shaw P. Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma. 2004;112(6):300–7.

    PubMed  Google Scholar 

  66. Santos AP, Ferreira L, Maroco J, Oliveira MM. Abiotic stress and induced DNA hypomethylation cause interphase chromatin structural changes in rice rDNA loci. Cytogenet Genome Res. 2011;132(4):297–303.

    CAS  PubMed  Google Scholar 

  67. Lysak MA, Fransz PF, Ali HBM, Schubert I. Chromosome painting in Arabidopsis thaliana. Plant J. 2001;28(6):689–97.

    CAS  PubMed  Google Scholar 

  68. Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma. 2004;113(5):258–69.

    CAS  PubMed  Google Scholar 

  69. Fransz P, de Jong JH, Lysak M, Castiglione MR, Schubert I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci U S A. 2002;99(22):14584–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Armstrong SJ, Franklin FC, Jones GH. Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci. 2001;114(23):4207–17.

    CAS  PubMed  Google Scholar 

  71. Fransz P, Soppe W, Schubert I. Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res. 2003;11(3):227–40.

    CAS  PubMed  Google Scholar 

  72. Berr A, Schubert I. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics. 2007;176(2):853–63.

    PubMed Central  PubMed  Google Scholar 

  73. Dong F, Jiang J. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 1998;6(7):551–8.

    CAS  PubMed  Google Scholar 

  74. Funabiki H, Hagan I, Uzawa S, Yanagida M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol. 1993;121(5):961–76.

    CAS  PubMed  Google Scholar 

  75. Gilson E, Laroche T, Gasser S. Telomeres and the functional architecture of the nucleus. Trends Cell Biol. 1993;3(4):128–34.

    CAS  PubMed  Google Scholar 

  76. Palladino F, Laroche T, Gilson E, Axelrod A, Pillus L, Gasser SM. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell. 1993;75(3):543–55.

    CAS  PubMed  Google Scholar 

  77. Manuelidis L. Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet. 1985;71(4):288–93.

    CAS  PubMed  Google Scholar 

  78. Manuelidis L, Borden J. Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma. 1988;96(6):397–410.

    CAS  PubMed  Google Scholar 

  79. Vourc’h C, Taruscio D, Boyle AL, Ward DC. Cell cycle-dependent distribution of telomeres, centromeres and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp Cell Res. 1993;205(1):142–51.

    PubMed  Google Scholar 

  80. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol. 1999;145(6):1119–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Bridger JM, Boyle S, Kill IR. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol. 2000;10(3):149–52.

    CAS  PubMed  Google Scholar 

  82. Manders EMM, Kimura H, Cook PR. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol. 1999;144(5):813–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Fussel CP. Rabl distribution of interphase and prophase telomeres in Allium cepa is not altered by colchicines and/or ultracentrifugation. Am J Bot. 1992;79(7):771–7.

    Google Scholar 

  84. Wilson KL, Foisner R. Lamin-binding proteins. Cold Spring Harb Perspect Biol. 2010;2(4):000554.

    Google Scholar 

  85. Fajkus J, Kovarík A, Královics R, Bezdĕk M. Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet. 1995;247(5):633–8.

    CAS  PubMed  Google Scholar 

  86. Vershinin AV, Heslop-Harrison JS. Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Mol Biol. 1998;36(1):149–61.

    CAS  PubMed  Google Scholar 

  87. Ingber DE, Jamieson JD. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. In: Andersson LC, Gahmberg CG, Ekblom P, editors. In gene expression during normal and malignant differentiation. Orlando: Academic; 1985. p. 13–32.

    Google Scholar 

  88. Pienta KJ, Getzenberg RH, Coffey DS. Cell structure and DNA organization. Crit Rev Eukaryot Gene Express. 1991;1(4):355–85.

    CAS  Google Scholar 

  89. Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci. 1993;104(3):613–27.

    PubMed  Google Scholar 

  90. Gerlitz G, Reiner O, Bustin M. Microtubule dynamics alter the interphase nucleus. Cell Mol Life Sci. 2013;70(7):1255–68.

    CAS  PubMed  Google Scholar 

  91. Panstruga R, Büschges R, Piffanelli P, Schulze-Lefert P. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 1998;26(4):1056–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ. 2010;33(4):604–11.

    PubMed  Google Scholar 

  93. Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K. Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819(2):129–36.

    CAS  PubMed  Google Scholar 

  94. Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol. 2009;12(2):133–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Santos AP, Serra T, Figueiredo DD, Barros P, Lourenco T, Chander S, Oliveira MM, Saibo NJM. Transcription regulation of abiotic stress responses in rice: a combined action of transcription factors and epigenetic mechanisms. Omics: J Integr Biol. 2011;15(12):839–57.

    CAS  Google Scholar 

  96. McClintock B. The significance of responses of the genome to challenge. Science. 1984;226(4676):792–801.

    CAS  PubMed  Google Scholar 

  97. Grandbastien MA. Activation of plant transposons under stress conditions. Trends Plant Sci. 1998;3(5):181–7.

    Google Scholar 

  98. Madlung A, Comai L. The effect of stress on genome regulation and structure. Ann Bot. 2004;94(4):481–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Arnholdt-Schmitt B. Stress-induced cell reprogramming. A role for global genome regulation? Plant Phys. 2004;136(1):2579–86.

    CAS  Google Scholar 

  100. Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LA, Spillane C, Pikaard CS, Fransz P, Peeters AJ. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet. 2009;5(9):e1000638.

    PubMed Central  PubMed  Google Scholar 

  101. van Zanten M, Tessadori F, Bossen L, Peeters AJM, Fransz P. Large-scale chromatin de-compaction induced by low light is not accompanied by nucleosomal displacement. Plant Signal Behav. 2010;5(12):1677–8.

    PubMed Central  PubMed  Google Scholar 

  102. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell. 2010;22(9):3118–29.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci. 2007;120(7):1200–8.

    CAS  PubMed  Google Scholar 

  104. Tessadori F, Schulkes RK, van Driel R, Fransz P. Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J. 2007;50(5):848–57.

    CAS  PubMed  Google Scholar 

  105. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306–11.

    CAS  PubMed  Google Scholar 

  106. Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M. Tissue and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell. 2009;21(3):832–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Crevillén P, Sonmez C, Wu Z, Dean C. A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J. 2013;32(1):140–8.

    PubMed Central  PubMed  Google Scholar 

  108. Belmont AS, Straight AF. In vivo visualization of chromosomes using lac operator–repressor binding. Trends Cell Biol. 1998;8(3):121–4.

    CAS  PubMed  Google Scholar 

  109. Robinett C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol. 1996;135(6):1685–700.

    CAS  PubMed  Google Scholar 

  110. Belmont AS, Li G, Sudlow G, Robinett C. Visualization of large-scale chromatin structure and dynamics using the lac operator/lac repressor reporter system. Methods Cell Biol. 1999;58:203–22.

    CAS  PubMed  Google Scholar 

  111. Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997;91:35–45.

    CAS  PubMed  Google Scholar 

  112. Fuchs J, Lorenz A, Loidl J. Chromosome associations in budding yeast caused by integrated tandemly repeated transgenes. J Cell Sci. 2002;115:1213–20.

    CAS  PubMed  Google Scholar 

  113. Kato N, Lam E. Detection of chromosomes tagged with green fluorescent protein in live Arabidopsis thaliana plants. Genome Biol. 2001;2(11):research 0045.1–research 0045.10.

    Google Scholar 

  114. Kato N, Lam E. Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J Cell Sci. 2003;116(11):2195–201.

    CAS  PubMed  Google Scholar 

  115. Rosin FM, Watanabe N, Cacas JL, Kato N, Arroyo JM, Fang Y, May B, Vaughn M, Simorowski J, Ramu U. Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J. 2008;55(3):514–25.

    CAS  PubMed  Google Scholar 

  116. Matzke AJ, Huettel B, van der Winden J, Matzke M. Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol. 2005;139(4):1586–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Matzke AJ, Watanabe K, van der Winden J, Naumann U, Matzke M. High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants. Plant Methods. 2010;6:2.

    PubMed Central  PubMed  Google Scholar 

  118. Rosa S, de Lucia F, Mylne JS, Zhu D, Ohmido N, Pendle A, Kato N, Shaw P, Dean C. Physical clustering of FLC alleles during polycomb-mediated epigenetic silencing in vernalization. Genes Dev. 2013;27(17):1845–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Pecinka A, Kato N, Meister A, Probst AV, Schubert I, Lam E. Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci. 2005;118(16):3751–8.

    CAS  PubMed  Google Scholar 

  120. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Mol Cell. 1998;2(4):437–45.

    CAS  PubMed  Google Scholar 

  121. Schonberger J, Hammes UZ, Dresselhaus T. In vivo visualization of RNA in plants cells using the kN22 system and a GATEWAY-compatible vector series for candidate RNAs. Plant J. 2012;71(1):173–81.

    PubMed  Google Scholar 

  122. Tilsner J, Linnik O, Christensen NM, Bell K, Roberts IM, Lacomme C, Oparka KJ. Live-cell imaging of viral RNA genomes using a Pumilio-based reporter. Plant J. 2009;57(4):758–70.

    CAS  PubMed  Google Scholar 

  123. Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333(6042):642–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116(14):2833–8.

    CAS  PubMed  Google Scholar 

  125. Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays. 2012;34(5):412–26.

    PubMed  Google Scholar 

  126. Hübner B, Cremer T, Neumann J. Correlative microscopy of individual cells: sequential application of microscopic systems with increasing resolution to study the nuclear landscape. Methods Mol Biol. 2013;1042:299–336.

    PubMed  Google Scholar 

Download references

Acknowledgments

APS is supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal, through grants BPD/74197/2010 and BIA-BCM/111645/2009. RA is supported by FCT, Portugal, through grants PEst-OE/EQB/LA0004/2013 and PTDC/BIA-PLA/2411/2012. PS was supported by BB/J004588/1 from BBSRC and the John Innes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Santos, A., Abranches, R., Oliveira, M., Shaw, P. (2015). Plasticity of Chromatin Organization in the Plant Interphase Nucleus. In: Pontes, O., Jin, H. (eds) Nuclear Functions in Plant Transcription, Signaling and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2386-1_4

Download citation

Publish with us

Policies and ethics