Advertisement

RNA-Directed DNA Methylation and Transcriptional Silencing in Arabidopsis

  • Xian-Yang Deng
  • Xin-Jian He
Chapter

Abstract

RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation pathway, which is required for the silencing of transposable elements and transgenes. In the past decade, the main components of the RdDM pathway were identified, and the functions of these components were well studied. In this chapter, we summarize our understanding of the RdDM pathway and especially focus on recent works of the field. In this pathway, Pol IV-dependent small interfering RNAs (siRNAs) are assembled onto the Argonaute protein AGO4, and base-pair with Pol V-dependent scaffold noncoding RNAs, thereby targeting the RdDM effecter complex to their homologous genomic loci. By associating with AGO4, the de novo DNA methyltransferase DRM2 is guided to the loci and catalyze DNA methylation.

Keywords

RNA DNA methylation RdDM Pol IV Pol V AGO4 DRM2 

References

  1. 1.
    Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet. 2013 Feb;14(2):100–12.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010 March;11(3):204–20.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008 March 13;452(7184):215–9.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008 May 2;133(3):523–36.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL. Demethylation-induced developmental pleiotropy in Arabidopsis. Science. 1996 Aug 2;273(5275):654–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013 Jan 17;152(1–2):352–64.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell. 2012 Sept 28;151(1):167–80.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 2002 April 4;416(6880):556–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Cao X, Jacobsen SE. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol. 2002 July 9;12(13):1138–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Henderson IR, Deleris A, Wong W, Zhong X, Chin HG, Horwitz GA, et al. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet. 2010 Oct;6(10):e1001182.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Law JA, Ausin I, Johnson LM, Vashisht AA, Zhu JK, Wohlschlegel JA, et al. A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis. Curr Biol. 2010 May 25;20(10):951–6.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ. RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol. 2009 June;21(3):367–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol. 2011 Aug;12(8):483–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE. RNA silencing genes control de novo DNA methylation. Science. 2004 Feb 27;303(5662):1336.CrossRefPubMedGoogle Scholar
  15. 15.
    Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science. 2003 Jan 31;299(5607):716–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. RNA polymerase IV directs silencing of endogenous DNA. Science. 2005 April 1;308(5718):118–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet. 2005 July;37(7):761–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell. 2005 March 11;120(5):613–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 2005 Sept 1;19(17):2030–40.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell. 2009 Jan 30;33(2):192–203.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Huang L, Jones AM, Searle I, Patel K, Vogler H, Hubner NC, et al. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat Struct Mol Biol. 2009 Jan;16(1):91–3.CrossRefPubMedGoogle Scholar
  22. 22.
    He XJ, Hsu YF, Pontes O, Zhu J, Lu J, Bressan RA, et al. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes Dev. 2009 Feb 1;23(3):318–30.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004 May;2(5):E104.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet. 2006 June;38(6):721–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res. 2012 April;22(4):624–36.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Eun C, Lorkovic ZJ, Naumann U, Long Q, Havecker ER, Simon SA, et al. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana. PloS One. 2011;6(10):e25730.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, et al. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell. 2010 Feb;22(2):321–34.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Zheng X, Zhu J, Kapoor A, Zhu JK. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J. 2007 March 21;26(6):1691–701.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Pasa-Tolic L, et al. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell. 2012 Dec 14;48(5):811–8.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Mosher RA, Schwach F, Studholme D, Baulcombe DC. PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3145–50.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Zhang X, Henderson IR, Lu C, Green PJ, Jacobsen SE. Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci U S A. 2007 March 13;104(11):4536–41.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Law JA, Vashisht AA, Wohlschlegel JA, Jacobsen SE. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLoS Genet. 2011 July;7(7):e1002195.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Liu J, Bai G, Zhang C, Chen W, Zhou J, Zhang S, et al. An atypical component of RNA-directed DNA methylation machinery has both DNA methylation-dependent and -independent roles in locus-specific transcriptional gene silencing. Cell Res. 2011 Dec;21(12):1691–700.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Law JA, Du J, Hale CJ, Feng S, Krajewski K, Palanca AM, et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature. 2013 June 20;498(7454):385–9.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Zhang H, Ma ZY, Zeng L, Tanaka K, Zhang CJ, Ma J, et al. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8290–5.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Smith LM, Pontes O, Searle I, Yelina N, Yousafzai FK, Herr AJ, et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell. 2007 May;19(5):1507–21.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Wierzbicki AT, Haag JR, Pikaard CS. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell. 2008 Nov 14;135(4):635–48.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Wierzbicki AT, Ream TS, Haag JR, Pikaard CS. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet. 2009 May;41(5):630–4.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Zhong X, Hale CJ, Law JA, Johnson LM, Feng S, Tu A, et al. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat Struct Mol Biol. 2012 Sept;19(9):870–5.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Lee TF, Gurazada SG, Zhai J, Li S, Simon SA, Matzke MA, et al. RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats. Epigenetics. 2012 July;7(7):781–95.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Wierzbicki AT, Cocklin R, Mayampurath A, Lister R, Rowley MJ, Gregory BD, et al. Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev. 2012 Aug 15;26(16):1825–36.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Zheng B, Wang Z, Li S, Yu B, Liu JY, Chen X. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev. 2009 Dec 15;23(24):2850–60.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    He XJ, Hsu YF, Zhu S, Liu HL, Pontes O, Zhu J, et al. A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development. Genes Dev. 2009 Dec 1;23(23):2717–22.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Kanno T, Bucher E, Daxinger L, Huettel B, Kreil DP, Breinig F, et al. RNA-directed DNA methylation and plant development require an IWR1-type transcription factor. EMBO Rep. 2010 Jan;11(1):65–71.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Gao Z, Liu HL, Daxinger L, Pontes O, He X, Qian W, et al. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature. 2010 May 6;465(7294):106–9.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kanno T, Bucher E, Daxinger L, Huettel B, Bohmdorfer G, Gregor W, et al. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nat Genet. 2008 May;40(5):670–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Kanno T, Mette MF, Kreil DP, Aufsatz W, Matzke M, Matzke AJ. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr Biol. 2004 May 4;14(9):801–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Johnson LM, Law JA, Khattar A, Henderson IR, Jacobsen SE. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet. 2008 Nov;4(11):e1000280.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kuhlmann M, Mette MF. Developmentally non-redundant SET domain proteins SUVH2 and SUVH9 are required for transcriptional gene silencing in Arabidopsis thaliana. Plant Mol Biol. 2012 Aug;79(6):623–33.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Liu ZW, Shao CR, Zhang CJ, Zhou JX, Zhang SW, Li L, et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet. 2014 Jan;10(1):e1003948.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 2014 March 6;507(7490):124–8.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC, Stroud H, et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science. 2012 June 15;336(6087):1448–51.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Brabbs TR, He Z, Hogg K, Kamenski A, Li Y, Paszkiewicz KH, et al. The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA-directed DNA methylation. Plant J. 2013 Sept;75(5):836–46.CrossRefPubMedGoogle Scholar
  54. 54.
    Lorkovic ZJ, Naumann U, Matzke AJ, Matzke M. Involvement of a GHKL ATPase in RNA-directed DNA methylation in Arabidopsis thaliana. Curr Biol. 2012 May 22;22(10):933–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009 Jan 22;457(7228):413–20.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet. 2011 Jan;12(1):19–31.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell. 2008 April 4;133(1):116–27.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature. 2006 Oct 26;443(7114):1008–12.CrossRefPubMedGoogle Scholar
  59. 59.
    Pontes O, Li CF, Costa Nunes P, Haag J, Ream T, Vitins A, et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell. 2006 July 14;126(1):79–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Ye R, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, et al. Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell. 2012 June 29;46(6):859–70.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht AA, et al. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell. 2014 May 22;157(5):1050–60.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell. 2006 July 14;126(1):93–106.CrossRefPubMedGoogle Scholar
  63. 63.
    Pontes O, Vitins A, Ream TS, Hong E, Pikaard CS, Costa-Nunes P. Intersection of small RNA pathways in Arabidopsis thaliana sub-nuclear domains. PloS One. 2013;8(6):e65652.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Pikaard CS. Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol. 2006;71:473–80.CrossRefPubMedGoogle Scholar
  65. 65.
    El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 2007 Oct 15;21(20):2539–44.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Bies-Etheve N, Pontier D, Lahmy S, Picart C, Vega D, Cooke R, et al. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 2009 June;10(6):649–54.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, et al. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell. 2009 May 1;137(3):498–508.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Rowley MJ, Avrutsky MI, Sifuentes CJ, Pereira L, Wierzbicki AT. Independent chromatin binding of ARGONAUTE4 and SPT5 L/KTF1 mediates transcriptional gene silencing. PLoS Genet. 2011 June;7(6):e1002120.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Ausin I, Greenberg MV, Simanshu DK, Hale CJ, Vashisht AA, Simon SA, et al. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8374–81.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Ausin I, Mockler TC, Chory J, Jacobsen SE. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat Struct Mol Biol. 2009 Dec;16(12):1325–7.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Zhang CJ, Ning YQ, Zhang SW, Chen Q, Shao CR, Guo YW, et al. IDN2 and its paralogs form a complex required for RNA-directed DNA methylation. PLoS Genet. 2012;8(5):e1002693.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Xie M, Ren G, Costa-Nunes P, Pontes O, Yu B. A subgroup of SGS3-like proteins act redundantly in RNA-directed DNA methylation. Nucleic Acids Res. 2012 May;40(10):4422–31.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Zhu Y, Rowley MJ, Bohmdorfer G, Wierzbicki AT. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol Cell. 2013 Jan 24;49(2):298–309.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Ausin I, Greenberg MV, Li CF, Jacobsen SE. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis. Epigenetics. 2012 Jan 1;7(1):29–33.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Dou K, Huang CF, Ma ZY, Zhang CJ, Zhou JX, Huang HW, et al. The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. Nucleic Acids Res. 2013 Oct;41(18):8489–502.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Huang CF, Miki D, Tang K, Zhou HR, Zheng Z, Chen W, et al. A Pre-mRNA-splicing factor is required for RNA-directed DNA methylation in Arabidopsis. PLoS Genet. 2013;9(9):e1003779.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Zhang CJ, Zhou JX, Liu J, Ma ZY, Zhang SW, Dou K, et al. The splicing machinery promotes RNA-directed DNA methylation and transcriptional silencing in Arabidopsis. EMBO J. 2013 April 17;32(8):1128–40.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Bayne EH, Portoso M, Kagansky A, Kos-Braun IC, Urano T, Ekwall K, et al. Splicing factors facilitate RNAi-directed silencing in fission yeast. Science. 2008 Oct 24;322(5901):602–6.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science. 2012 Jan 6;335(6064):96–100.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Institute of Biological SciencesBeijingChina

Personalised recommendations