Skip to main content

Process Scale-Up and Optimization of Lyophilized Vaccine Products

  • Chapter
  • First Online:
Lyophilized Biologics and Vaccines

Abstract

Vaccine, in general, is our best defense against infectious diseases and represents one of the greatest success stories responsible for the reduction of infectious diseases. Relative to therapeutic proteins (TPs) and small molecules, vaccine drug product development is more challenging and it is often stated that the “process is product” especially for live virus vaccines (LVVs). Given the global outreach of vaccines and the corresponding impact on human health, a well-defined systematic approach must be used to achieve a global target product profile (GTPP) that is not only safe and efficacious but also delivers on the intended market demands while keeping customer centricity in mind (e.g., thermostability, delivery devices/images, etc.). This chapter intends to share our findings for attaining GTPP for lyophilized vaccine products by sharing commonly used guidelines and approaches (e.g., quality by design (QbD), process analytical testing (PAT), design of experiment (DOE), etc.) for end-to-end development of lyophilized vaccine products (from preformulation to commercialization). Specifically, technical aspects of a laboratory scale lyophilization process and scale-up challenges are described as they pertain to various manufacturing unit operation and good manufacturing practice (GMP), quality, and operations systems within each manufacturing environment. In addition, suitable case studies demonstrating the impact of (a) a lyophilization loading process for a commercial cabinet and (b) equipment/facility considerations during a transfer/scale-up process on products’ critical quality attributes (CQAs) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiernan R. Rotateq®- vaccines and related biological drug products advisory committee meeting. 2005.

    Google Scholar 

  2. Goviea M. Global advisory board presentation. 2005.

    Google Scholar 

  3. Chenand D, Kristensen D. Opportunities and challenges of developing thermostable vaccines. Expert Rev Vaccines. 2009;8:547–57.

    Article  Google Scholar 

  4. Brandau DT, Jones LS, Wiethoff CM, Rexroad J, Middaugh CR. Thermal stability of vaccines. J Pharm Sci. 2003;92:218–31.

    Article  CAS  PubMed  Google Scholar 

  5. Proquad® Product Insert. http://www.Merck.com.

  6. Pneumovax 23® Product Insert. http://www.Merck.com.

  7. Kristensen D, Chen D, Cummings R. Vaccine stabilization: research, commercialization, and potential impact. Vaccine. 2011;29:7122–4.

    Article  CAS  PubMed  Google Scholar 

  8. Mahoney RT, Francis DP, Frazatti-Gallina NM, Precioso AR, Raw I, Walter P, Whitehead P, Whitehead SS. Cost of production of live attenuated dengue vaccines: a case study of the Instituto Butantan, Sao Paulo, Brazil. Vaccine. 2012;30:4892–6.

    Article  CAS  PubMed  Google Scholar 

  9. Kristensen D, Zaffran M. Designing vaccines for developing-country populations: ideal attributes, delivery devices, and presentation formats. Procedia Vaccinol. 2010;2:119–23.

    Article  Google Scholar 

  10. Bhambhani A, Blue JT. Lyophilization strategies for development of a high-concentration monoclonal antibody formulation: benefits and pitfalls. Am Pharm Rev. 2010;13:31–8.

    CAS  Google Scholar 

  11. McAdams D, Chen D, Kristensen D. Spray drying and vaccine stabilization. Expert Rev Vaccine. 2012;11(10):1211–9.

    Article  CAS  Google Scholar 

  12. Clausi A, Chouvenc P. Formulation approach for the development of a stable, lyophilized formaldehyde-containing vaccine. Eur J Pharm Biopharm. 2013;85:272–8.

    Article  CAS  PubMed  Google Scholar 

  13. Burke CB, Hsu T, Volkin DB. Formulation, stability, and delivery of live attenuated vaccines for human use. Crit Rev Ther Drug Carrier Syst. 1999;16(1):1–83.

    CAS  PubMed  Google Scholar 

  14. Privalov PL. Cold Denaturation of proteins. Crit Rev Biochem Mol Biol 1990. 1990;25:281–305.

    Article  CAS  Google Scholar 

  15. Carpenter JF, Prestrelski SJ, Arakawa T. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. I. Enzyme activity and calorimetric studies. Arch Biochem Biophys. 1993;303:456–64.

    Article  CAS  PubMed  Google Scholar 

  16. Pikal MJ. Lyophilization. In: Swarbrick J, Boylan J, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 2002. pp. 1299–326.

    Google Scholar 

  17. Awotwe-Otoo D, Agarabi c, Wu GK, Casey E, Read E, Lute S, Brorson KA, Khan MA, Shah RB. Quality by design: Impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody. Int J Pharm. 2012;438:167–75.

    Article  CAS  PubMed  Google Scholar 

  18. Weiss IVWF, Young TM, Rhodes CJ. Principles, Approaches, and Challenges for predicting protein aggregation rates and shelf-life. J Pharm Sci. 2009;98(4):1246–77.

    Article  CAS  PubMed  Google Scholar 

  19. Morefield GL. A rational, systematic approach for the development of vaccine formulations. AAPS J. 2011;13(2):191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gardner CR, Almarsson O, Chen H, Morissette S, Peterson M, Zhang Z, Wang S, Lemmo A, Gonzalez-Zugasti J, Monagle J, Marchionna J, Ellis S, McNulty C, Johnson A, Levinson D, Cima M. Application of high throughput technologies to drug substance and drug product development. Comput Chem Engg. 2004;28:943–53.

    Article  CAS  Google Scholar 

  21. Capelle MAH, Gurny R, Arvinte T. High throughput screening of protein formulation stability: Practical consideration. Eur J Pharm Biopharm. 2007;65:131–48.

    Article  CAS  PubMed  Google Scholar 

  22. Bhambhani A, Thakkar S, Joshi SB, Middaugh CR. A formulation method to improve the physical stability of macromolecular-based drug products. In: Meyer B, editor. Therapeutic protein drug products: practical approaches to formulation in the laboratory, manufacturing, and the clinic. 2012. pp 13–45.

    Google Scholar 

  23. Iyer V, Hu l, Liyanage MR, Esfandiary R, Reinisch C, Meinke A, Maisonneuve J, Volkin DB, Joshi SB, Middaugh CR. Preformulation characterization of an aluminum Salt-adjuvanted trivalent recombinant protein-based vaccine candidate against Streptococcus penumoniae. J Pharm Sci. 2012;9(101):3078–90.

    Article  Google Scholar 

  24. Picard MD, Cohane KP, Gierahn TM, Higgina DE, Flechtner JB. High-throughput proteomic screening identifies Chlamydia trachomatis antigens that are capable of eliciting T cell and antibody responses that provide protection against vaginal challenge. Vaccine. 2012;30:4387–93.

    Article  CAS  PubMed  Google Scholar 

  25. EMA Guideline on excipients in the dossier for application for marketing authorisation of a medicinal product. 2008. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003382.pdf.

  26. FDA Guidance. Guidance for industry nonclinical studies for the safety evaluation of pharmaceutical excipients. 2005. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm079250.pdf.

  27. Jorgensen L, Hostrup S, Moeller EH, Grohganz H. Recent trends in stabilizing peptides and proteins in pharmaceutical formulation-considerations in the choice of excipients. Expert Opin Drug Deliv. 2009;6(11):1–12.

    Article  Google Scholar 

  28. Shi L, Evans RK, Burke CJ. Improving vaccine stabiltiy, potency, and delivery. Am Pharm Rev. 2004;7(5):104–7.

    Google Scholar 

  29. Prevnar Drug Description. http://wwwrxlistcom/prevnar-drughtm.

    Google Scholar 

  30. Hem SL, HogenEsch H, Middaugh CR, Volkin DB. Preformulation studies–the next advance in aluminum adjuvant-containing vaccines. Vaccine. 2010;28:4868–70.

    Article  CAS  PubMed  Google Scholar 

  31. Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotech. 2009;27:26–34.

    Article  CAS  Google Scholar 

  32. Carpenter J, Pikal M, Chang B, Randolph T. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14:969–75.

    Article  CAS  PubMed  Google Scholar 

  33. Pikal MJ. Freeze-drying of proteins, part ii: formulation selection. Biopharm. 1990;3:26–30.

    CAS  Google Scholar 

  34. Schwegman JJ, Hardwick LM, Akers MJ. Practical formulation and process development of freeze-dried products. Pharm Dev Technol. 2005;10:151–73.

    Article  CAS  PubMed  Google Scholar 

  35. Pikal MJ. Freeze-drying of proteins. part i: process design. BioPharm. 1990;3:18–28.

    CAS  Google Scholar 

  36. Carpenter JF, Prestrelski SJ, Arakawa T. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. I. Enzyme activity and calorimetric studies. Arch Biochem Biophys. 1993;303:456–64.

    Article  CAS  PubMed  Google Scholar 

  37. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.

    Article  CAS  PubMed  Google Scholar 

  38. Harris JH, Shire SJ, Winter C. Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies. Drug Dev Res. 2004;61(:):137–54.

    Article  CAS  Google Scholar 

  39. Sarciaux JM, Mansour S, Hageman MJ, Nail SL. Effects of buffer conditions on aggregation of bovine igG during freeze-drying. J Pharm Sci. 1999;12:1354–61.

    Article  Google Scholar 

  40. Chang BS, Kendrick BS, Carpenter JF. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci. 1996;12:1325–30.

    Article  Google Scholar 

  41. Blue J, Yoder H. Successful lyophilization development of protein therapeutics. Am Pharm Rev. 2009;40–44.

    Google Scholar 

  42. Tang XC, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;2:191–200.

    Article  Google Scholar 

  43. Patel SM, Jameel F, Pikal MJ. The effect of dryer load on freeze drying process design. J Pharm Sci. 2010;99(10):4363–79.

    Article  CAS  PubMed  Google Scholar 

  44. Zostavax® product insert. http://www.merck.com.

  45. Searles JA, Carpenter JF, Randolph TW. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg’ in pharmaceutical lyophilization. J Pharm Sci. 2001;90:872–87.

    Article  CAS  PubMed  Google Scholar 

  46. Williams NA, Lee Y, Polli GP, Jennings TA. The effects of cooling rate on solid phase transitions and associated vial breakage occurring in frozen mannitol solutions. J Parenter Sci Technol. 1986;40:135–41.

    CAS  PubMed  Google Scholar 

  47. Lueckel B, Bodmer D, Helk B, Leuenberger B. Formulations of sugars with amino acids or mannitol-influence of concentration ratio on the properties of the freeze-concentrate and the lyophilizate. Pharm Dev Technol. 1998;3:325–36.

    Article  CAS  PubMed  Google Scholar 

  48. Mackenzie AP. Basic Principles of Freeze-Drying for Pharmaceuticals. Bull Parenter Drug Assoc. 1966;20:101–30.

    CAS  PubMed  Google Scholar 

  49. Sheehan P, Liapis AL. Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies. Biotechnol Bioeng. 1998;60:712–28.

    Article  CAS  PubMed  Google Scholar 

  50. Kramers HA. Brownian motion in a field of force and diffusion model of chemical reactions. Physica. 1940;7:284–304.

    Article  CAS  Google Scholar 

  51. Pikal MJ, Roy ML, Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci. 1984;73:1224–37.

    Article  CAS  PubMed  Google Scholar 

  52. Pikal MJ, Lang JE. Rubber closures as a source of haze in freeze dried parenteral: test methodology for closure evaluation. J Parenter Drug Assoc. 1978;32:162–73.

    CAS  PubMed  Google Scholar 

  53. Duddu SP, Zhang G, Dal Monte PR. The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm Res. 1997;14:596–600.

    Article  CAS  PubMed  Google Scholar 

  54. U.S. Department of Health and Human Services, Food and Drug Administration. 2002. http://www.fda.gov/Drugs/Development ApprovalProcess/Manufacturing/QuestionsandAnswersonCurrent GoodManufacturingPracticescGMPforDrugs/UCM071836.

  55. U.S. Department of Health and Human Services, Food and Drug Administration. 2004. Guidance for industry: PAT-a framework for innovative pharmaceutical development, manufacturing and quality assurance http://www.fda.gov/downloads/Drugs/Guidance ComplianceRegulatoryInformation/Guidances/ucm070305.pdf.

  56. Junke BHr, Wang HY. Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng. 2006;95(2):226–61.

    Article  Google Scholar 

  57. Guidance for Industry: Q8(R2) Pharmaceutical Development, US Department of Health and Human Service, Food and Drug Administration (FDA). 2009. http://www.ich.org/LOB/ media/MEDIA4986.pdf.

  58. Read EK, Park JT, Shah RB, Riley BS, Brorson KA, Rathore AS. Process analytical technology (PAT) for biopharmaceutical products: part II. Concepts and applications. Biotechnol Bioeng. 2009;105(2):285–95.

    Article  Google Scholar 

  59. Schellekens H. Biosimilar therapeutics-what do we need to consider? Nephrol Dial Transplant. 2009;2(Suppl 1):i27–i36.

    CAS  Google Scholar 

  60. Rathore AS. Follow-on protein products: scientific issues, developments and challenges. Trends Biotechnol. 2009;27(12):698–705.

    Article  CAS  PubMed  Google Scholar 

  61. Kirdar AO, Chen G, Rathore AS. Application of near-infrared (NIR) spectroscopy for screening of raw materials used in the cell culture medium for the production of a recombinant therapeutic protein. Biotechnol Prog. 2010;26:527–31.

    CAS  PubMed  Google Scholar 

  62. Read EK, Shah RB, Riley BS, Park JT, Brorson KA, Rathore AS. Process Analytical Technology (PAT) for Biopharmaceutical Products: Part II. Concepts and Applications. Biotechnol Bioeng. 2010;105(2):285–95.

    Article  CAS  PubMed  Google Scholar 

  63. Park SC, Kim M, Noh J, Chung H, Woo Y, Lee J, Kemper MS. Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy. Anal Chim Acta. 2007;593:43–53.

    Google Scholar 

  64. St-Onge L, Kwong E, Sabsabi M, Vadas EB. Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy. J Pharm Biomed Anal. 2004;36:277–84.

    Article  CAS  PubMed  Google Scholar 

  65. Metz H, Mader K. Benchtop-NMR and MRI-A new analytical tool in drug delivery research. Int J Pharm. 2008;364:170–5.

    Article  CAS  PubMed  Google Scholar 

  66. Genin N, Rene F, Corrieu GA. method for on-line determination of residual water content and sublimation end-point during freeze-drying. Chem Eng Process. 1996;35:255–63.

    Article  CAS  Google Scholar 

  67. Zhou GX, Ge Z, Dorwart J, Izzo B, Kupura J, Bicker G, Wyvratt J. Determination and differentiation of surface and bound water in drug substance by near infrared spectroscopy. J Pharm Sci. 2003;92(5):1058–65.

    Article  CAS  PubMed  Google Scholar 

  68. Gieseler H, Kessler WJ, Finson M, Davis SJ, Mulhall PA, Bons V, Debo DJ, Pikal MJ. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying. J Pharm Sci. 2007;96(7):1776–93.

    Article  CAS  PubMed  Google Scholar 

  69. Rambhatla S, Pikal MJ. Heat and mass transfer scale up issues during freeze-drying. Part I. Atypical radiation and the edge-vial effect. AAPS PharmSciTech. 2003;4:e14.

    Article  PubMed  Google Scholar 

  70. Rambhatla S, Ramo Rt, Bhugra C, Pikal MJ. Heat and mass transfer scale up issues during freeze drying, II: control and characterization of the degree of supercooling. AAPS PharmSciTech. 2004;5:e58.

    Article  PubMed  Google Scholar 

  71. RambhatlaS, Tchessalov S, Pikal MJ. Heat and mass transfer scale up issues during freeze drying, III: control and characterization of dryer differences via operational qualification tests. AAPS PharmSciTech. 2006;7(2):e1.

    Google Scholar 

  72. Searles JA, Carpenter JF, Randolph TW. The ice nucleation temperature determines the primarydrying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci. 2001;90:860–71.

    Article  CAS  PubMed  Google Scholar 

  73. Searles JA. Observation and implications of sonic water vapor flow during freeze-drying. Am Pharm Rev. 2004;7(2):58–69.

    CAS  Google Scholar 

  74. Wallen AJ, Susan HVO, Sinacola JR, Phillips BR. The effect of loading process on product collapse during large-scale lyophilization. J Pharm Sci. 2009;98(3):997–1004.

    Article  CAS  PubMed  Google Scholar 

  75. Giordano A, Barresi AA, Fissore D. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process. J Pharm Sci. 2011;100(1):311–24.

    Article  CAS  PubMed  Google Scholar 

  76. Fissore D, Pisano R, Barresi AA. Advanced approach to build the design space for the primary drying of a pharmaceutical freeze-drying process. J Pharm Sci. 2011;100(11):4922–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Blue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blue, J., Sinacola, J., Bhambhani, A. (2015). Process Scale-Up and Optimization of Lyophilized Vaccine Products. In: Varshney, D., Singh, M. (eds) Lyophilized Biologics and Vaccines. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2383-0_9

Download citation

Publish with us

Policies and ethics