Skip to main content

Heterogeneity of Protein Environments in Frozen Solutions and in the Dried State

  • Chapter
  • First Online:
Lyophilized Biologics and Vaccines

Abstract

Freezing and freeze-drying of protein formulations often produce multiple populations of protein molecules, with different local environments and different stabilities. Such heterogeneity is commonly related to formation of ice, and includes concentration gradients created due to difference in the diffusion coefficients of proteins and other solutions, redistribution of the charged species and electric potential on the ice/solution interface, and solution inclusions by ice crystals. Also, one should expect heterogeneity to exist in freeze-concentrated solution even if ice-related inhomogeneity cases are eliminated, as heterogeneity is a fundamental property of amorphous systems. As a result of heterogeneity, shelf life of a pharmaceutical protein formulation would be limited by the most unstable population of protein molecules, which may represent a relatively minor fraction. Identifying this least stable portion of protein molecules and targeting formulation development efforts on this fraction, rather than going after the main (and potentially the most stable) part, would allow a formulator to optimize stabilization and formulation development efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacKenzie AP. The physico-chemical basis for the freeze-drying process. Dev Biol Stand. 1977;36:51–7.

    CAS  Google Scholar 

  2. Franks F. Freeze-drying: from empiricism to predictability. Cryoletters. 1990;11:93–110.

    Google Scholar 

  3. Luyet B, Rasmussen D. Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose. Biodynamica. 1968;10(210):167–91.

    CAS  PubMed  Google Scholar 

  4. Cocks FH, Brower WE. Phase diagram relationships in cryobiology. Cryobiology. 1974;4:340–258.

    Article  Google Scholar 

  5. Shalaev E, Franks F. Changes in the physical state of model mixtures during freezing and drying: impact on product quality. Cryobiology. 1996;33:14–26.

    Article  CAS  Google Scholar 

  6. Franks F, Auffret T. Freeze-drying of pharmaceuticals and biopharmaceuticals. Cambridge: RSC Publishing; 2007. p. 206.

    Google Scholar 

  7. Shalaev E, Franks F. Solid-liquid state diagrams in pharmaceutical lyophilisation: crystallisation of solutes. In: Levine H, editor. Progress in amorphous food and pharmaceutical systems. Cambridge: The Royal Society of Chemistry; 2002. pp. 200–15.

    Chapter  Google Scholar 

  8. Scheiwe MW, Korber Ch, Wollhover K. Cryomicroscopical analysis of solute polarization during freezing. Cryobiology. 1982;19(6):652.

    Article  Google Scholar 

  9. Scheiwe MW, Korber Ch, Wollhover K. Relevance of thermally defined cryomicroscopy and thermodynamic analysis for cryopreservation. Cryobiology. 1982;19(6):653.

    Article  Google Scholar 

  10. Singh SK, Kolhe P, Wang W, Nema S. Large-scale freezing of biologics-a practitioner’s review part 1: fundamental aspects. Bioprocess Int. 2009;7(10):32–44.

    CAS  Google Scholar 

  11. Singh SK, Kolhe P, Wang W, Nema S. Large-scale freezing of biologics: understanding protein and solute concentration changes in a cryovessel-Part 2. BioPharm Int. 2010;23(7).

    Google Scholar 

  12. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12:505–23.

    Article  CAS  PubMed  Google Scholar 

  13. Cooper AJ, Smallwood JA, Morgan RA. The preparation of freeze-thaw density gradients with homogeneous solute concentrations. J Immunol Methods. 1984;71(2):259–64.

    Article  CAS  PubMed  Google Scholar 

  14. Hirano TYT, Matsuzaki H, Sekine T. Simple method for preparing a concentration gradient of serum components by freezing and thawing. Clin Chem. 1991;37(7):1225–9.

    CAS  PubMed  Google Scholar 

  15. Omamg SH, Velae OD. Concentration gradients in bological samples during storage, freezing and thawing. J Anal Chem. 1974;269:177–81.

    Google Scholar 

  16. Dong A, Prestrelski J, Allison SD, Carpenter JF. Infrared spectroscopic studies of lyophilization and temperature induced protein aggregation. J Pharm Sci. 1995;84(4):415–24.

    Article  CAS  PubMed  Google Scholar 

  17. Abdul-Fattah AM, Lechuga-Ballesteros D, Kalonia DS, Pikal MJ. The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state. J Pharm Sci. 2008;97(1):163–84.

    Article  CAS  PubMed  Google Scholar 

  18. Webb SD, Golledge SL, Cleland JL, Carpenter JF, Randolph TW. Surface adsorption of recombinant human interferongamma in lyophilized and spray-lyophilized formulations. J Pharm Sci. 2002;91(6):1474–87.

    Article  CAS  PubMed  Google Scholar 

  19. Kachurin LG, Bekryaev VI, Psalomshchikov VF. Dokl. Akad. Nauk SSSR. 1967;174:1122–5.

    CAS  Google Scholar 

  20. Hanley TOD, Rao SR. Electrical freezing potentials and the migration of moisture and ions in freezing soils. Eng Appl Permafr Areas. 1982:453–8.

    Google Scholar 

  21. Goff HD, Verespej E, Jermann D. Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim Acta. 2003;399(1–2):43–55.

    Article  CAS  Google Scholar 

  22. Shalaev E, Zografi G. The concept of ‘structure’ in amorphous solids from the perspective of the pharmaceutical sciences. Amorphous food and pharmaceutical systems. Cambridge: The Royal Society of Chemistry; 2002. pp. 11–30.

    Google Scholar 

  23. Izutsu K, Kojima S. Freeze-concentration separates proteins and polymer excipients into different amorphous phases. Pharm Res. 2000;17(10):1316–22.

    Article  CAS  PubMed  Google Scholar 

  24. Padilla AM, Pikal MJ. Phase separation of freeze-dried amorphous solids: the Occurrence and detection of multiple amorphous phases in pharmaceutical systems. Drugs Pharm Sci. 2010;206:82–111.

    CAS  Google Scholar 

  25. Padilla AM. Shin GC, Luthra S, Pikal MJ. The study of amorphous phase separation in a model polymer phase-separating system using raman microscopy and a low-temperature stage: effect of cooling rate and nucleation temperature. J Pharm Sci. 2010;100(4):1362–76.

    Article  PubMed  Google Scholar 

  26. Heller MC, Carpenter JF, Randolph TW. Conformational stability of lyophilized PEGylated proteins in a phase-separating system. J Pharm Sci. 1999;88(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  27. Padilla AM, Pikal MJ. The study of phase separation in amorphous freeze-dried systems, Part 2: investigation of as a tool for studying amorphous phase separation in freeze-dried protein formulations. J Pharm Sci. 2010;100(4):1467–74.

    Article  PubMed  Google Scholar 

  28. Padilla AM, Ivanisevic I, Yang Y, Engers D, Bogner RH, Pikal MJ. The study of phase separation in amorphous freeze-dried systems. Part I: Raman mapping and computational analysis of XRPD data in model polymer systems. J Pharm Sci. 2011;100(1):206–22.

    Article  CAS  PubMed  Google Scholar 

  29. Forney-Stevens KM, Pelletier MJ, Shalaev EY, Pikal MJ, Bogner RH. Optimization of a Raman microscopy technique to efficiently detect amorphous-amorphous phase separation in freeze-dried protein formulations. J Pharm Sci. 2014. doi:10.1002/jps.23882.

    Google Scholar 

  30. Twomey A, Less R, Kurata K, Takamatsu H, Aksan A. In situ spectroscopic quantification of protein-ice interactions. J Phys Chem B. 2013;117(26):7889–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Xu Y, Grobelny P, Von Allmen A, Knudson K, Pikal MJ, Carpenter JF, Randolph TW. Protein quantity on the air-solid interface determines degradation rates of human growth hormone in lyophilized samples. Pharm Biotechnol. 2014. doi:10.1002/jps.23926.

    Google Scholar 

  32. Khodadadi S, Clark NJ, McAuley A, Cristiglio V, Curtis JE, Shalaev EY, Krueger S. Influence of sorbitol on protein crowding in solution and freeze-concentrated phases. Soft Matter. 2014;10(23):4056–60.

    Article  CAS  PubMed  Google Scholar 

  33. Authelin J-R, MacKenzie AP, Rasmussen DH, Shalaev EY. Water clusters in amorphous pharmaceuticals. J Pharm Sci. 2014. doi:10.1002/jps.24009.

    Google Scholar 

  34. Chapsky L, Rubinsky B. Kinetics of antifreeze protein-induced ice growth inhibition. FEBS Lett. 1997;412(1):241–4.

    Article  CAS  PubMed  Google Scholar 

  35. Pertaya N, Marshall CB, DiPrinzio CL, Wilen L, Thomson ES, Wettlaufer JS, Davies PL, Braslavsky I. Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces. Biophys J. 2007;92(10):3663–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sönnichsen FD, DeLuca CI, Davies PL, Sykes BD. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure. 1996;4(11):1325–37.

    Article  PubMed  Google Scholar 

  37. Kuiper MJ, Lankin C, Gauthier SY, Walker VK, Davies PL. Purification of antifreeze proteins by adsorption to ice. Biochem Biophys Res Commun. 2003;300:645–8.

    Article  CAS  PubMed  Google Scholar 

  38. Strambini GB, Gabellieri E. Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J. 1996;70(2):971–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Strambini GB, Gabellieri E. Protein stability in ice. Biophys J. 2007;92(6):2131–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Korber C. Phenomena at the advancing ice-liquid interface: solutes, particles and biological cells. Q Rev Biophys. 1988;21(2):229–98.

    Article  CAS  PubMed  Google Scholar 

  41. Makievski AV, Fainerman VB, Bree M, Wüstneck R, Krägel J, Miller R. Adsorption of proteins at the liquid/air interface. J Biophys Chem B. 1998;102(2):417–25.

    CAS  Google Scholar 

  42. Kreilgaard L, Jones LS, Randolph TW, Frokjaer S, Flink JM, Mamming MC, Carpenter JF. Effect of tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J Pharm Sci. 1998;87(12):1597–603.

    CAS  PubMed  Google Scholar 

  43. Butler MF. Freeze concentration of solutes at the ice/solution interface studied by optical interferometry. Crystal Growth. 2002;2(6):541–8.

    Article  CAS  Google Scholar 

  44. Chen YH, Cao E, Cui ZF. An experimental study of freeze concentration in biological media. Food Bioprod Process. 2001;79(C1):35–40.

    Article  Google Scholar 

  45. Chang L, Milton N, Rigsbee D, Mishra DS, Tang X, Thomas LC, Pikal MJ. Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10 % sucrose solutions. Thermochimica Acta. 2006;444:141–7.

    Article  CAS  Google Scholar 

  46. Corti HR, Angell CA, Auffret T, Levine H, Buera MP, Reid DS, Roos YH, Slade L. Emperical and theoretical models of equilibrium and non-equilibrium transition temperatures of supplemented phase diagrams in aqueous systems (IUPAC Technical Report). Pure Appl Chem. 2010;82:1065–97.

    Article  CAS  Google Scholar 

  47. Levine H, Slade L. A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs). Carbohydrate Polymer. 1986;6:213–44.

    Article  CAS  Google Scholar 

  48. Rasmussen D, Leyet B. Complementary study of some non-equilibrium phase transitions in frozen solutions of glycerol, ethylene glycol, glucose and sucrose. Biodynamica. 1969;10:319–31.

    Google Scholar 

  49. Roos Y, Karel M. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J Food Sci. 1991;56:1676–81.

    Article  CAS  Google Scholar 

  50. Shalaev EY, Franks F. Structural glass transitions and thermophysical processes in amorphous carbohydrates and their supersaturated solutions. J Chemica Soc Faraday Trans. 1995;91:1511.

    Article  CAS  Google Scholar 

  51. Wu J, Reading M, Craig DQM. Application of calorimetry, sub-ambient atomic force microscopy and dynamic mechanical analysis to the study of frozen aqueous trehalose solutions. Pharm Res. 2008;25:1396–404.

    Article  CAS  PubMed  Google Scholar 

  52. Varshney DB, Elliott JA, Gatlin LA, Kumar S, Suryanarayanan R, Shalaev EY. Synchrotron X-ray diffraction investigation of the anomalous behavior of ice during freezing of aqueous systems. J Phys Chem B. 2009;113:6177–82.

    Article  CAS  PubMed  Google Scholar 

  53. Franks HS, Wen WY. Ion-solvent interactions. Structural aspects of ion-slovent interactions: a suggested picture of water structure. Discuss Faraday Soc. 1957;24:133–40.

    Article  Google Scholar 

  54. Nemethy G, Scheraga HA. Structure of water and hydrophobic bonding in proteins. J Chem Phys. 1962;36:3382–400.

    Article  CAS  Google Scholar 

  55. Sedlak M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization. J Phys Chem. 2006;110:4329.

    Article  CAS  Google Scholar 

  56. Luthra SA, Hodge IM, Pikal MJ. Investigation of the impact of annealing on global molecular mobility in glasses: optimization for stabilization of amorphous pharmaceuticals. J Pharm Sci. 2008;97(9):3865–82.

    Article  CAS  PubMed  Google Scholar 

  57. Abdul-Fattah AM, Dellerman KM, Bogner RH, Pikal MJ. The effect of annealing on the stability of amorphous solids: chemical stability of freeze-dried moxalactam. J Pharm Sci. 2007;96(5):1237–50.

    Article  CAS  PubMed  Google Scholar 

  58. Luthra SA, Hodge IM, Utz M, Pikal MJ. Correlation of annealing with chemical stability in lyophilized pharmaceutical glasses. J Pharm Sci. 2008;97:5240.

    Article  CAS  PubMed  Google Scholar 

  59. Pikal MJ, Reddy RD, Shalaev EY, Ziegler CB. Method of stabilizing disordered cefovecin sodium salt. PCT International Application. WO2005102274A2. USA: Pfizer Products Inc; 2005.

    Google Scholar 

  60. Reddy RD, Shanker RM, Ziegler CB, Shalaev EY. Process for annealing amorphous atorvastatin. Canadian Patent Application, CA2547216 A1.

    Google Scholar 

  61. Vasenkov SV, Korolev VV, Tolkatchev VA. The influence of deep traps for gas molecules on oxygen transport in the glass of 2-methylpentanol-2. Chem Phys. 1995;195:305–11.

    Article  CAS  Google Scholar 

  62. Wang B, Cicerone MT, Aso Y, Pikal MJ. The impact of thermal treatment on the stability of freeze-dried amorphous pharmaceuticals: II. Aggregation in an IgG1 fusion protein. J Pharm Sci. 2010;99(2):683–700.

    CAS  PubMed  Google Scholar 

  63. Chou SG, Soper AK, Khodadadi S, Curtis JE, Krueger S, Cicerone MT, Fitch A, Shalaev EY. Pronounced micro-heterogeneity in a sorbitol-water mixture observed through variable temperature neutron scattering. J Phys Chem B. 2012;116(15):4439–47.

    Article  CAS  PubMed  Google Scholar 

  64. Shalaev EY, Franks F, Echlin P. Crystalline and amorphous phases in the ternary system water-sucrose-sodium chloride. J Phys Chem. 1996;100:11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenyi Shalaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salnikova, M., Varshney, D., Shalaev, E. (2015). Heterogeneity of Protein Environments in Frozen Solutions and in the Dried State. In: Varshney, D., Singh, M. (eds) Lyophilized Biologics and Vaccines. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2383-0_2

Download citation

Publish with us

Policies and ethics