Skip to main content

Spray-Drying of Biopharmaceuticals

  • Chapter
  • First Online:
Lyophilized Biologics and Vaccines

Abstract

Spray-drying is an ubiquitous application in the pharmaceutical industry, and its use in drug formulation will only continue to expand. The combination of spray-drying and biopharmaceuticals succeeds because of the versatility and flexibility of spray-drying techniques to accommodate fragile biologics and specific formulation requirements. This chapter includes a basic overview of spray-drying, examines alternative spray-drying techniques, and compares and contrasts spray-drying and lyophilization for the preparation of biopharmaceutical formulations. Additionally, this chapter discusses the optimization of excipients, equipment, and operational parameters through specific examples of spray-drying for biopharmaceutical applications including pulmonary delivery, vaccine stabilization and delivery, and inhaled insulin formulations. Ultimately, the choice between lyophilization and spray-drying to produce a solid drug formulation should be guided by the particular biopharmaceutical in question and the desired delivery route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2010;99(2):575–86.

    CAS  PubMed  Google Scholar 

  2. Masters K. Spray drying handbook. Boston: Addison-Wesley Longman, Limited; 1991.

    Google Scholar 

  3. Mujumdar AS, editor. Handbook of industrial drying. 3rd edn. Boca Raton: CRC Press, Taylor & Francis Group, LLC; 2007.

    Google Scholar 

  4. Nath S, Satpathy GR. A systematic approach for investigation of spray drying process. Dry Technol. 1998;16(6):1173–93.

    Article  CAS  Google Scholar 

  5. Zbicinski I, Strumillo C, Delag A. Drying kinetics and particle residence time in spray drying. Dry Technol. 2002;20(9):1751–68.

    Article  CAS  Google Scholar 

  6. Kemp IC, Wadley R, Hartwig T, et al. Experimental study of spray drying and atomization with a two-fluid nozzle to produce inhalable particles. Dry Technol. 2013;31(8):930–41.

    Article  CAS  Google Scholar 

  7. Legako J, Dunford NT. Effect of spray nozzle design on fish oil-whey protein microcapsule properties. J Food Sci. 2010;75(6):E394–400.

    Article  CAS  PubMed  Google Scholar 

  8. Sahoo NG, Abbas A, Judeh Z, et al. Solubility enhancement of a poorly water-soluble anti-malarial drug: experimental design and use of a modified multifluid nozzle pilot spray drier. J Pharm Sci. 2009;98(1):281–96.

    Article  CAS  PubMed  Google Scholar 

  9. Wan F, Maltesen MJ, Andersen SK, et al. One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle. Pharm Res. 2014 [Epub ahead of print].

    Google Scholar 

  10. Kondo K, Niwa T, Danjo K. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique. Eur J Pharm Sci. 2014;51:11–9.

    Article  CAS  PubMed  Google Scholar 

  11. Büchi Labortechnik AG. Nano Spray Dryer B-90: technical data sheet. 2014. http://www.buchi.com/spray-drying. Accessed 12 Feb 2014.

  12. Vestergaard V. Milk powder technology [ebook]. Soeborg: GEA Niro; 2004.

    Google Scholar 

  13. Evaporator Dryer Technologies, Inc. Cyclones. 2014. http://www.evapdryertech.com/cyclones.html. Accessed 5 Feb 2014.

  14. Keen JM, McGinity JW, Williams RO, 3rd. Enhancing bioavailability through thermal processing. Int J Pharm. 2013;450(1–2):185–96.

    Article  CAS  PubMed  Google Scholar 

  15. Scalia S, Traini D, Young PM, et al. Comparison of spray congealing and melt emulsification methods for the incorporation of the water-soluble salbutamol sulphate in lipid microparticles. Pharm Dev Technol. 2013;18(1):266–73.

    Article  CAS  PubMed  Google Scholar 

  16. Shukla D, Chakraborty S, Singh S, et al. Lipid-based oral multiparticulate formulations—advantages, technological advances and industrial applications. Expert Opin Drug Deliv. 2011;8(2):207–24.

    Article  CAS  PubMed  Google Scholar 

  17. Maschke A, Becker C, Eyrich D, et al. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm. 2007;65(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  18. Di Sabatino M, Albertini B, Kett VL, et al. Spray congealed lipid microparticles with high protein loading: preparation and solid state characterisation. Eur J Pharm Sci. 2012;46(5):346–56.

    Article  CAS  PubMed  Google Scholar 

  19. Schwendeman SP, Tobío M, Joworowicz M, et al. New strategies for the microencapsulation of tetanus vaccine. J Microencapsul. 1998;15(3):299–318.

    Article  CAS  PubMed  Google Scholar 

  20. Passerini N, Perissutti B, Albertini B, et al. A new approach to enhance oral bioavailability of Silybum Marianum dry extract: association of mechanochemical activation and spray congealing. Phytomedicine. 2012;19(2):160–8.

    Article  CAS  PubMed  Google Scholar 

  21. Murugappan S, Patil HP, Kanojia G, et al. Physical and immunogenic stability of spray freeze-dried influenza vaccine powder for pulmonary delivery: comparison of inulin, dextran, or a mixture of dextran and trehalose as protectants. Eur J Pharm Biopharm. 2013;85(3 Pt A):716–25.

    Article  CAS  PubMed  Google Scholar 

  22. Niwa T, Danjo K. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Eur J Pharm Sci. 2013;50(3–4):272–81.

    Article  CAS  PubMed  Google Scholar 

  23. Tonnis WF, Amorij JP, Vreeman MA, et al. Improved storage stability and immunogenicity of hepatitis B vaccine after spray-freeze drying in presence of sugars. Eur J Pharm Sci. 2014 [Epub ahead of print].

    Google Scholar 

  24. Hu J, Johnston KP, Williams RO, 3rd. Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci. 2003;20(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  25. Rogers TL, Hu J, Yu Z, et al. A novel particle engineering technology: spray-freezing into liquid. Int J Pharm. 2002;242(1–2):93–100.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Finlay WH. Powder formation by atmospheric spray-freeze drying. US Patent 7,007,406 B2, 7 Mar 2006.

    Google Scholar 

  27. Mumenthaler M, Leuenberger H. Atmospheric spray-freeze drying: a suitable alternative in freeze-drying technology. Int J Pharm. 1991;72(2):97–110.

    Article  CAS  Google Scholar 

  28. Wang Zl, Finlay WH, Peppler MS, et al. Powder formation by atmospheric spray-freeze-drying. Powder Technol. 2006;170:45–52.

    Article  CAS  Google Scholar 

  29. PowderPro AB. Production Granulator PS-20. 2013. http://powderpro.se/products/production-granulator-ps-20/. Accessed 10 Feb 2014.

  30. Nolan LM, Li J, Tajber L, et al. Particle engineering of materials for oral inhalation by dry powder inhalers. II-Sodium cromoglicate. Int J Pharm. 2011;405(1–2):36–46.

    Article  CAS  PubMed  Google Scholar 

  31. Maltesen MJ, Bjerregaard S, Hovgaard L, et al. Quality by design—spray drying of insulin intended for inhalation. Eur J Pharm Biopharm. 2008;70(3):828–38.

    Article  CAS  PubMed  Google Scholar 

  32. Dobry DE, Settell DM, Baumann JM, et al. A model-based methodology for spray-drying process development. J Pharm Innov. 2009;4(3):133–42.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Maury M, Murphy K, Kumar S, et al. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59(3):565–73.

    Article  CAS  PubMed  Google Scholar 

  34. Ståhl K, Claesson M, Lilliehorn P, et al. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int J Pharm. 2002;233(1–2):227–37.

    Article  PubMed  Google Scholar 

  35. Haj-Ahmad RR, Elkordy AA, Chaw CS, et al. Compare and contrast the effects of surfactants (PluronicF-127 and CremophorEL) and sugars (b-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme. Eur J Pharm Sci. 2013;49(4):519–34.

    Article  CAS  PubMed  Google Scholar 

  36. Prinn KB, Costantino HR, Tracy M. Statistical modeling of protein spray drying at the lab scale. AAPS PharmSciTech. 2002;3(1):E4.

    Article  CAS  PubMed  Google Scholar 

  37. Paluch KJ, Tajber L, Corrigan OI, et al. Impact of process variables on the tic and physicochemical properties of spray-dried porous microparticles, part I: introduction of a new morphology classification system. J Pharm Pharmacol. 2012;64(11):1570–82.

    Article  PubMed  Google Scholar 

  38. Nandiyanto ABD, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size range. Adv Powder Technol. 2011;22(1):1–19.

    Article  CAS  Google Scholar 

  39. Wu X, Hayes D, Jr, Zwischenberger JB, et al. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation. Drug Des Devel Ther. 2013;7:59–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Balducci AG, Cagnani S, Sonvico F, et al. Pure insulin highly respirable powders for inhalation. Eur J Pharm Sci. 2014;51:110–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ohtake S, Martin RA, Yee L, et al. Heat-stable measles vaccine produced by spray drying. Vaccine. 2010;28(5):1275–84.

    Article  CAS  PubMed  Google Scholar 

  43. Amorij JP, Huckriede A, Wilschut J, et al. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm Res. 2008;25(6):1256–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Maschke A, Becker C, Eyrich D, et al. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm. 2007;65(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  46. Liang W, Kwok PC, Chow MY, et al. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids. Eur J Pharm Biopharm. 2013 [Epub ahead of print].

    Google Scholar 

  47. Schiffter H, Condliffe J, Vonhoff S. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery. J R Soc Interface. 2010;7(Suppl 4):S483–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Constantino HR. Excipients of use in lyophilized pharmaceutical peptide, protein, and other bioproducts. In: Constantino HR, editor. Lyophilization of biopharmaceuticals. Arlington: AAPS Press; 2004.

    Google Scholar 

  49. Carpenter JF, Pikal MJ, Chang BS, et al. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.

    Article  CAS  PubMed  Google Scholar 

  50. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  51. Patel SM, Pikal MJ. Emerging freeze-drying process development and scale-up issues. AAPS PharmSciTech. 2011;12(1):372–78.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Dianawati D, Mishra V, Shah NP. Effect of drying methods of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris on secondary protein structure and glass transition temperature as studied by Fourier transform infrared and differential scanning calorimetry. J Dairy Sci. 2013;96(3):1419–30.

    Article  CAS  PubMed  Google Scholar 

  53. Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Dry Technol. 2006;24(6):763–8.

    Article  CAS  Google Scholar 

  54. Capelle MA, Gurny R, Arvinte T. High throughput screening of protein formulation stability: practical considerations. Eur J Pharm Biopharm. 2007;65(2):131–48.

    Article  CAS  PubMed  Google Scholar 

  55. Maa YF, Hsu CC. Effect of high shear on proteins. Biotechnol Bioeng. 1996;51(4):458–65.

    Article  CAS  PubMed  Google Scholar 

  56. Maa YF, Hsu CC. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng. 1997;54(6):503–12.

    Article  CAS  PubMed  Google Scholar 

  57. Maa YF, Nguyen PA, Hsu SW. Spray-drying of air-liquid interface sensitive recombinant human growth hormone. J Pharm Sci. 1998;87(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  58. Lechuga-Ballesteros D, Charan C, Stults CL, et al. Trileucine improves aerosol performance and stability of spray-dried powders for inhalation. J Pharm Sci. 2008;97(1):287–302.

    Article  CAS  PubMed  Google Scholar 

  59. Webb SD, Golledge SL, Cleland JL, et al. Surface adsorption of recombinant human interferon-gamma in lyophilized and spray-lyophilized formulations. J Pharm Sci. 2002;91(6):1474–87.

    Article  CAS  PubMed  Google Scholar 

  60. Yu Z, Garcia AS, Johnston KP, et al. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. Eur J Pharm Biopharm. 2004;58(3):529–37.

    Article  CAS  PubMed  Google Scholar 

  61. Costantino HR, Firouzabadian L, Hogeland K, et al. Protein spray-freeze drying. Effect of atomization conditions on particle size and stability. Pharm Res. 2000;17(11):1374–83.

    Article  CAS  PubMed  Google Scholar 

  62. Liao YH, Brown MB, Nazir T, et al. Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme. Pharm Res. 2002;19(12):1847–53.

    Article  CAS  PubMed  Google Scholar 

  63. Tzannis ST, Prestrelski SJ. Activity-stability considerations of trypsinogen during spray drying: effects of sucrose. J Pharm Sci. 1999;88(3):351–9.

    Article  CAS  PubMed  Google Scholar 

  64. Santivarangkna C, Aschenbrenner M, Kulozik U, et al. Role of glassy state on stabilities of freeze-dried probiotics. J Food Sci. 2011;76(8):R152–6.

    Article  CAS  PubMed  Google Scholar 

  65. Forbes RT, Barry BW, Elkordy AA. Preparation and characterisation of spray-dried and crystallised trypsin: FT-Raman study to detect protein denaturation after thermal stress. Eur J Pharm Sci. 2007;30(3–4):315–23.

    Article  CAS  PubMed  Google Scholar 

  66. French DL, Arakawa T, Li T. Fourier transform infared spectroscopy investigation of protein conformation in spray-dried protein/trehalose powders. Biopolymers. 2004;73(4):524–31.

    Article  CAS  PubMed  Google Scholar 

  67. Schüle S, Friess W, Bechtold-Peters K, et al. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Eur J Pharm Biopharm. 2007;65(1):1–9.

    Article  PubMed  Google Scholar 

  68. Sollohub K, Cal K. Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci. 2010;99(2):587–97.

    CAS  PubMed  Google Scholar 

  69. Agu RU, Ugwoke MI, Armand M, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2(4):198–209.

    Article  CAS  PubMed  Google Scholar 

  70. Scheuch G, Kohlhaeufl MJ, Brand P, et al. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev. 2006;58(9–10):996–1008.

    Article  CAS  PubMed  Google Scholar 

  71. Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29(1):196–212.

    Article  CAS  PubMed  Google Scholar 

  72. Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev. 2006;58(9–10):1009–29.

    Article  CAS  PubMed  Google Scholar 

  73. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    Article  CAS  PubMed  Google Scholar 

  74. Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013;447(1–2):251–80.

    Article  CAS  PubMed  Google Scholar 

  75. Chow AH, Tong HH, Chattopadhyay P, et al. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  CAS  PubMed  Google Scholar 

  76. Chew NY, Tang P, Chan HK, et al. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res. 2005;22(1):148–52.

    Article  CAS  PubMed  Google Scholar 

  77. Sou T, Meeusen EN, de Veer M, et al. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011;29(4):191–8.

    Article  CAS  PubMed  Google Scholar 

  78. Colonna C, Conti B, Genta I, et al. Non-viral dried powders for respiratory gene delivery prepared by cationic and chitosan loaded liposomes. Int J Pharm. 2008;364(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  79. Jalalipour M, Najafabadi AR, Gilani K, et al. Effect of dimethyl-beta-cyclodextrin concentrations on the pulmonary delivery of recombinant human growth hormone dry powder in rats. J Pharm Sci. 2008;97(12):5176–85.

    Article  CAS  PubMed  Google Scholar 

  80. Jensen DM, Cun D, Maltesen MJ, et al. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release. 2010;142(1):138–45.

    Article  PubMed  Google Scholar 

  81. Seville PC, Kellaway IW, Birchall JC. Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. J Gene Med. 2002;4(4):428–37.

    Article  CAS  PubMed  Google Scholar 

  82. Codrons V, Vanderbist F, Verbeeck RK, et al. Systemic delivery of parathyroid hormone (1–34) using inhalation dry powders in rats. J Pharm Sci. 2003;92(5):938–50.

    Article  CAS  PubMed  Google Scholar 

  83. Maa YF, Nguyen PA, Sweeney T, et al. Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res, 1999;16(2):249–54.

    Article  CAS  Google Scholar 

  84. Mohri K, Okuda T, Mori A, et al. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  85. Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. Philadelphia: Saunders; 2008.

    Google Scholar 

  86. McAdams D, Chen D, Kristensen D. Spray drying and vaccine stabilization. Expert Rev Vaccines. 2012;11(10):1211–9.

    Article  CAS  PubMed  Google Scholar 

  87. Centers for Disease Control and Prevention (CDC). Guidelines for maintaining and managing the vaccine cold chain. MMWR Morb Mortal Wkly Rep. 2003;52(42):1023–5.

    PubMed  Google Scholar 

  88. Gazmararian JA, Oster NV, Green DC, et al. Vaccine storage practices in primary care physician offices: assessment and intervention. Am J Prev Med. 2002;23(4):246–53.

    Article  PubMed  Google Scholar 

  89. Atkinson WL, Pickering LK, Schwartz B, et al. Centers for Disease Control and Prevention (2002) General recommendations on immunization. Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP). MMWR Recomm Rep 51(RR-2):1–35. 2002.

    Google Scholar 

  90. SAGE Working Group on Vaccination in Humanitarian Emergencies. Vaccination in acute humanitarian emergencies: a framework for decision-making. World Health Organization; 2012 (23 Oct 2012).

    Google Scholar 

  91. Año G, Esquisabel A, Pastor M, et al. A new oral vaccine candidate based on the microencapsulation by spray-drying of inactivated Vibrio cholerae. Vaccine. 2011;29(34):5758–64.

    Article  PubMed  Google Scholar 

  92. Pastor M, Esquisabel A, Talavera A, et al. An approach to a cold chain free oral cholera vaccine: in vitro and in vivo characterization of Vibrio cholerae gastro-resistant microparticles. Int J Pharm. 2013;448(1):247–58.

    Article  CAS  PubMed  Google Scholar 

  93. Saluja V, Amorij JP, Kapteyn JC, et al. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  94. Ajmera A, Scherließ R. Stabilisation of proteins via mixtures of amino acids during spray drying. Int J Pharm. 2014;463(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  95. Maa YF, Ameri M, Shu C, et al. Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. J Pharm Sci. 2004;93(7):1912–23.

    Article  CAS  PubMed  Google Scholar 

  96. Chen D, Kapre S, Goel A, et al. Thermostable formulations of a hepatitis B vaccine and a meningitis A polysaccharide conjugate vaccine produced by a spray drying method. Vaccine. 2010;28(31):5093–9.

    Article  CAS  PubMed  Google Scholar 

  97. Patel N, Craddock BL, Staniforth JN, et al. Spray-dried insulin particles retain biological activity in rapid in-vitro assay. J Pharm Pharmacol. 2001;53(10):1415–8.

    Article  CAS  PubMed  Google Scholar 

  98. Bellary S, Barnett AH. Inhaled insulin (Exubera): Combining efficacy and convenience. Diab Vasc Dis Res. 2006;3(3):179–85.

    Article  PubMed  Google Scholar 

  99. White S, Bennett DB, Cheu S, et al. EXUBERA: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol Ther. 2005;7(6):896–906.

    Article  CAS  PubMed  Google Scholar 

  100. U.S. Food and Drug Administration. Press release: FDA approves first ever inhaled insulin combination product for treatment of diabetes. 27 Jan 2006.

    Google Scholar 

  101. Sadrzadeh N, Miller DP, Lechuga-Ballesteros D, et al. Solid-state stability of spray-dried insulin powder for inhalation: chemical kinetics and structural relaxation modeling of Exubera above and below the glass transition temperature. J Pharm Sci. 2010;99(9):3698–710.

    CAS  PubMed  Google Scholar 

  102. Bi R, Shao W, Wang Q, et al. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target. 2008;16(9):639–48.

    Article  CAS  PubMed  Google Scholar 

  103. Depreter F, Amighi K. Formulation and in vitro evaluation of highly dispersive insulin dry powder formulations for lung administration. Eur J Pharm Biopharm. 2010:76(3):454–63.

    Article  CAS  PubMed  Google Scholar 

  104. Al-Qadi S, Grenha A, Carrión-Recio D, et al. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012:157(3):383–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ledet, G., Graves, R., Bostanian, L., Mandal, T. (2015). Spray-Drying of Biopharmaceuticals. In: Varshney, D., Singh, M. (eds) Lyophilized Biologics and Vaccines. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2383-0_12

Download citation

Publish with us

Policies and ethics