Skip to main content

Indicaxanthin Dietetics: Past, Present, and Future

  • Chapter
  • First Online:
Pigments in Fruits and Vegetables

Abstract

The betalamic acid derivatives of betalain pigments (purple-red betacyanins and yellow betaxanthins) are dietary compounds occurring in a few plant foods including beets (Beta vulgaris) and cactus pears (Opuntia spp.). Belonging to betaxanthins, indicaxanthin is rich in yellow cactus pear (Opuntia ficus indica L., Mill). High dietary bioavailability of indicaxanthin in humans, as well as its physicochemical properties, radical-scavenging and antioxidant activities in various experimental models suggest this molecule as a promising nutraceutical agent and open perspectives for its applications. Life-long modulatory activity at the epigenetic level now appears as the new frontier to shed light on the beneficial effects from a chronic exposure at dietary concentrations of redox-active phytochemicals. Data obtained from studies on human intestinal carcinoma cell cultures show that indicaxanthin has the potential to affect global DNA methylation, revert onco-suppressor gene silencing, and induce arrest of cell growth. Elucidation of cell pathways and molecular mechanisms underlying epigenetic activities in various cells and conditions is needed to understand these benefits and limitations of dietary indicaxanthin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slavin JL, Lloyd B (2012) Health benefits of fruits and vegetables. Adv Nutr 3:506–516

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Murakami A, Ohnishi K (2012) Target molecules of food phytochemicals: food science bound for the next dimension. Food Funct 3:462–476

    CAS  PubMed  Google Scholar 

  3. Obrenovich ME, Li Y, Parvathaneni K, Yendluri BB, Palacios HH, Leszek J, Aliev G (2011) Antioxidants in health, disease and aging. CNS Neurol Disord Drug Targets 10:192–207

    CAS  PubMed  Google Scholar 

  4. Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81:268S–276S

    CAS  PubMed  Google Scholar 

  5. Doré S (2005) Unique properties of polyphenol stilbenes in the brain: more than antioxidant actions; gene/protein regulatory activity. Neurosignals 14:61–70

    PubMed  Google Scholar 

  6. Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, Bei R (2012) The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci 17:2396–2418

    Google Scholar 

  7. Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133:387–391

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Sepúlveda-Jiménez GP, Rueda-Benítez P, Porta H, Rocha-Sosa M (2004) Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst. Physiol Mol Plant Pathol 64:125–133 (Erratum in Physiological and Molecular Plant Pathology 66:75)

    Google Scholar 

  9. Suzuki N, Kousevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Google Scholar 

  10. Suzuki N, Mittler R (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 53:2269–2276

    CAS  PubMed  Google Scholar 

  11. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    CAS  PubMed  Google Scholar 

  12. Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A et al (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822:753–783

    CAS  PubMed  Google Scholar 

  13. Surh YJ (2011) Xenohormesis mechanisms underlying chemopreventive effects of some dietary phytochemicals. Ann N Y Acad Sci 1229:1–6

    PubMed  Google Scholar 

  14. Nair S, Li W, Kong AT (2007) Natural dietary anti-cancer chemopreventive compounds: redox-mediated differentiatal signaling mechanisms in cytoprotection of normal cells versus cytotoxycity in tumor cells. Acta Pharmacol Sin 28:459–472

    CAS  PubMed  Google Scholar 

  15. Piattelli M (1981) The betalains: structure, biosynthesis and chemical taxonomy. In: Conn EE (ed) The biochemistry of plants: a comprehensive treatise, vol 7. Academic, New York, pp 557–575

    Google Scholar 

  16. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269

    CAS  PubMed  Google Scholar 

  17. Stafford HA (1994) Anthocynins and betalains: evolution of the mutually exclusive pathways. Plant Sci 101:91–98

    CAS  Google Scholar 

  18. Stintzing FC, Schieber A, Carle R (2002) Identification of betalains from yellow beet (Beta vulgaris, L) and cactus pear (Opuntia ficus indica, L Mill) by high performance liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem 50:2302–2307

    CAS  PubMed  Google Scholar 

  19. Khan MI, Harsha PSC, Giridhar P, Ravishankar GA (2012) Pigment identification, nutritional composition, bioactivity, and in vitro cancer cell cytotoxicity of Rivina humilis L. berries, potential source of betalains. LWT Food Sci Technol 47:315–323

    CAS  Google Scholar 

  20. Piattelli M, Minale L, Prota G (1964) Isolation structure and absolute configuration of indicaxanthin. Tetrahedron 20:2325–2329

    CAS  Google Scholar 

  21. Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM et al (2002) Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxantin. J Agric Food Chem 50:6895–6901

    CAS  PubMed  Google Scholar 

  22. Stintzing F, Carle R (2007) Betalains—emerging prospects for food scientists. Trends Food Sci Technol 18:514–525

    CAS  Google Scholar 

  23. Schwartz SJ, von Elbe JH, Pariza MW, Goldsworthy T, Pitot HC (1983) Inability of red beet betalain pigments to initiate or promote hepatocarcinogenesis. Food Chem Toxicol 21:531–535

    CAS  PubMed  Google Scholar 

  24. Escribano J, Pedreno MA, Garcia-Carmona F, Munoz R (1998) Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem Anal 9:124–127

    CAS  Google Scholar 

  25. Kanner J, Harel S, Granit R (2001) Betalains—a new class of dietary cationized antioxidants. J Agric Food Chem 49:5178–5185

    CAS  PubMed  Google Scholar 

  26. Pedreno MA, Escribano J (2000) Studying the oxidation and the antiradical activity of betalain from beetroot. J Biol Educ 35:49–51

    Google Scholar 

  27. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, a-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    CAS  PubMed  Google Scholar 

  28. Tesoriere L, Allegra M, Butera D, Gentile C, Livrea MA (2007) Kinetics of the lipoperoxyl radical scavenging activity of indicaxanthin in solution and in unilamellar liposomes. Free Radical Res 41:226–233

    CAS  Google Scholar 

  29. Tesoriere L, Gentile C, Angileri F, Attanzio A, Tutone M, Allegra M, Livrea MA (2013) Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix. Eur J Nutr 52:1077–1088

    Google Scholar 

  30. Frank T, Stintzing FC, Carle R, Bitsch I, Quaas D, Strass G et al (2005) Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol Res 52:290–297

    CAS  PubMed  Google Scholar 

  31. Gliszczynska-Swiglo A, Szymusiak H, Malinowska P (2006) Betanin, the main pigment of red beet: molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam 23:1079–1087

    CAS  PubMed  Google Scholar 

  32. Tesoriere L, Butera D, Allegra M, Fazzari M, Livrea MA (2005) Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo-induced oxidative hemolysis in humans. J Agr Food Chem 53:1266–1270

    CAS  Google Scholar 

  33. Turco Liveri ML, Sciascia L, Lombardo R, Tesoriere L, Passante E, Livrea MA (2007) Spectrophotometric evidence for the solubilization site of betalain pigments in membrane biomimetic systems. J Agric Food Chem 55:2836–2840

    Google Scholar 

  34. Turco Liveri ML, Sciascia L, Allegra M, Tesoriere L, Livrea MA (2009) Partition of indicaxanthin in membrane biomimetic systems. A kinetic and modeling approach. J Agric Food Chem 57:10959–10963

    CAS  PubMed  Google Scholar 

  35. Tesoriere L, Butera D, D’Arpa D, Di Gaudio F, Allegra M, Gentile C, Livrea MA (2003) Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radic Res 37:689–696

    CAS  PubMed  Google Scholar 

  36. Tesoriere L, Allegra M, Butera D, Livrea MA (2004) Absorption, excretion, and distribution in low density lipoproteins of dietary antioxidant betalains. Potential health effects of betalains in humans. Am J Clin Nutr 80:941–945

    CAS  PubMed  Google Scholar 

  37. Barclay LRC (1993) Model biomembranes: quantitative studies of peroxidation, antioxidant action, partitioning, and oxidative stress. Can J Chem 71:1–16

    CAS  Google Scholar 

  38. Gentile C, Tesoriere L, Allegra M, Livrea MA, D’Alessio P (2004) Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression. Ann NY Acad Sci 1028:481–486

    CAS  PubMed  Google Scholar 

  39. Allegra M, Ianaro A, Tersigni M, Tesoriere L, Livrea MA (2009) Indicaxanthin exerts anti-inflammatory effects on carrageenin-induced rat pleurisy. Free Radical Res 43 (Suppl 1):S47

    Google Scholar 

  40. Tesoriere L, Attanzio A, Allegra M, Gentile C, Livrea MA (2013) Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca2 + increase and oxidative stress. Br J Nutr 1–11 (e-pub), 110:230–240

    Google Scholar 

  41. Watts AR, Lennard ML, Tucker GT, Woods HF (1993) Beeturia and the biological fate of beetroot pigments. Pharmacogenetics 3:302–311

    CAS  PubMed  Google Scholar 

  42. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  PubMed  Google Scholar 

  43. Tesoriere L, Allegra M, Butera D, Gentile C, Livrea MA (2006) Cytoprotective effects of the antioxidant phytochemical indicaxanthin in beta-thalassemia red blood cells. Free Radic Res 40:753–761

    CAS  PubMed  Google Scholar 

  44. McDougall GJ, Dobson P, Smith P, Blake A, Stewart D (2005) Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53:5896–5904

    CAS  PubMed  Google Scholar 

  45. Tesoriere L, Fazzari M, Angileri F, Gentile C, Livrea MA (2008) In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins and antioxidative potential of food digesta. J Agric Food Chem 56:10487–10492

    CAS  PubMed  Google Scholar 

  46. Adson A, Raub TJ, Burton PS, Barshun CL, Hilgers AR, Audus KL, Ho NF (1994) Quantitative approach to delineate paracellular diffusion in cultured epithelial cell monolyer. J Pharm Sci 83:1529–1536

    CAS  PubMed  Google Scholar 

  47. Karlsson J, Ungell AL, Artursson P (1994) Effect of an oral rehydration solution on paracellular drug transport in intestinal epithelial cells and tissues: assessment of charge and tissue selectivity. Pharm Res 11:S248

    Google Scholar 

  48. Pade V, Stavchansky S (1997) Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm Res 14:1210–1215

    CAS  PubMed  Google Scholar 

  49. Knipp GT, Ho NF, Barsuhn CL, Borchardt R (1997) Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J Pharm Sci 86:1105–1110

    CAS  PubMed  Google Scholar 

  50. Galijatovic A, Otake Y, Walle UK, Walle T (2001) Induction of UDP-glucuronyltransferase UGT1A1 by the flavonoid chrisin in Caco2 cells- potential role in carcinogen bioactivation. Pharmaceutical Res 18:374–379

    CAS  Google Scholar 

  51. Sun DX, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D et al (2002) Comparison of human duodenum and Caco2 gene expression profiles for 12,000 gene sequence tags and correlation with permeabililty of 26 drugs. Pharm Res 19:1400–1416

    CAS  PubMed  Google Scholar 

  52. Gandía-Herrero F, Escribano J, García-Carmona F (2009) The role of phenolic hydroxy groups in the free radical scavenging activity of betalains. J Nat Prod 72:1142–1146

    PubMed  Google Scholar 

  53. Gandía-Herrero F, Escribano J, García-Carmona F (2010) Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 232:449–460

    PubMed  Google Scholar 

  54. Gandía-Herrero F, Escribano J, García-Carmona F (2012) Purification and antiradical properties of the structural unit of betalains. J Nat Prod 75:1030–1036

    PubMed  Google Scholar 

  55. Belitz HD, Grosch W (1987) Food chemistry. Springer-Verlag, Berlin, pp 177

    Google Scholar 

  56. Lin JC, Olcott HS (1995) Ethoxyquin nitroxide. J Agric Food Chem 23:798–800

    Google Scholar 

  57. Lockart B, Bonhomme N, Roger A, Dorey G, Casara P, Lestage P (2001) Protective effect of the antioxidant 6-ethoxy-2,2-pentamethylen-1,2-dihydroquinoline (S 33113) in models of cerebral neurodegeneration. Eur J Pharmacol 416:59–68

    Google Scholar 

  58. Pellegrini N, Re R, Yang M, Rice-Evans C (1999) Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2†²-azinobis(3-ethylenebenzothiazoline-6-sulfonic cid) radical cation decolorization assay. Methods Enzymol 299:379–389

    CAS  Google Scholar 

  59. Niki E, Saito T, Kawakami A, Kamiya Y (1984) Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem 259:4177–4182

    CAS  PubMed  Google Scholar 

  60. Burton GW, Ingold KU (1981) Autoxidation of biological molecules. 1. The antioxidant activity of vitamin E and related chainbreaking phenolic antioxidants in vitro. J Am Chem Soc 103:6472–6477

    CAS  Google Scholar 

  61. Barclay LRC, Ingold KU (1981) Autoxidation of biological molecules. 2. Autoxidation of a model membrane. Comparison of the autoxidation of egg lecithin phosphatidylcholine in water and in chlorobenzene. J Am Chem Soc 103:6478–6485

    CAS  Google Scholar 

  62. Everse J, Hsia N (1997) The toxicities of native and modified hemoglobins. Free Radic Biol Med 22:1075–1099

    CAS  PubMed  Google Scholar 

  63. Everse J (1998) The structure of heme proteins compounds I and II: some misconceptions. Free Radic Biol Med 24:1338–1346

    CAS  PubMed  Google Scholar 

  64. Furtmuller PG, Obinger C, Hsuanyu Y, Dunford HB (2000) Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion. Eur J Biochem 267:5858–5864

    CAS  PubMed  Google Scholar 

  65. Rund D, Rachmilewitz E (2005) Beta-thalassemia. New Engl J Med 353:1135–1146

    CAS  PubMed  Google Scholar 

  66. Vollaard NB, Reeder BJ, Shearman JP, Menu P, Wilson MT, Cooper CE (2005) A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo. Free Radic Biol Med 39:1216–1228

    CAS  PubMed  Google Scholar 

  67. Rifkind JM, Nagababu E (2012) Hemoglobin redox reactions and red blood cell aging. Antiox Redox Sign. doi:10.1089/ars.2012.4867

    Google Scholar 

  68. Halliwell B, Zhao K, Whiteman M (2001) The gastrointestinal tract: a major site of antioxidant action? Free Radic Res 33:819–880

    Google Scholar 

  69. Kanner J, Lapidot T (2001) The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Bio Med 31:1388–1395

    CAS  Google Scholar 

  70. Scalbert A, Morand C, Manach C, Remesy C (2002) Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 56:276–282

    CAS  PubMed  Google Scholar 

  71. Ursini F, Sevanian A (2002) Wine polyphenols and optimal nutrition. Ann NY Acad Sci 957:200–209

    CAS  PubMed  Google Scholar 

  72. Klebanoff SJ (1980) Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93:480–489

    CAS  PubMed  Google Scholar 

  73. Klebanoff SJ (1975) Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Seminar Haematol 12:117–142

    CAS  Google Scholar 

  74. Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 97:1535–1544

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Heinecke JW (1998) Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 141:1–15

    CAS  PubMed  Google Scholar 

  76. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–525

    CAS  PubMed  Google Scholar 

  77. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, Heinecke JW (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 272:1433–1436

    CAS  PubMed  Google Scholar 

  78. Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 97:1535–1544

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Hazell LJ, Stocker R (1993) Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J 290:165–172

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99:2075–2081

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Kostyuk VA, Kraemer T, Sies H, Schewe T (2003) Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids. FEBS Lett 537:146–150

    CAS  PubMed  Google Scholar 

  82. Dunford HB (ed) (1999) Heme peroxidases. Wiley-VCH: New York and Toronto

    Google Scholar 

  83. Allegra M, Furtmüller PG, Jantschko W, Zederbauer M, Tesoriere L, Livrea MA, Obinger C (2005) Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem Biophys Res Commun 332:837–844

    CAS  PubMed  Google Scholar 

  84. Halliwell B, Gutteridge JMC (1999) Free radical in biology and medicine, 3rd edn. Oxford University Press: New York

    Google Scholar 

  85. Chiu DT, van den Berg J, Kuypers FA, Hung IJ, Wie JS, Liu TZ (1996) Correlation of membrane lipid peroxidation with oxidation of hemoglobin variants: possibly related to the rates of hemin release. Free Radic Biol Med 21:89–95

    CAS  PubMed  Google Scholar 

  86. Grinberg LN, Rachmilewitz EA, Kitrossky N, Chevion M (1995) Hydroxyl radical generation in beta-thalassemic red blood cells. Free Radic Biol Med 18:611–615

    CAS  PubMed  Google Scholar 

  87. Scott MD, van den Berg JJ, Repka T, Rouyer-Fessard P, Hebbel RP, Beuzard Y, Lubin BH (1993) Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. J Clin Invest 91:1706–1712

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Van Dyke B, Saltman P (1996) Hemoglobin: a mechanism for the generation of hydroxyl radicals. Free Radic Biol Med 20:985–989

    CAS  PubMed  Google Scholar 

  89. Das N, Chowdhury TD, Chattopadhyay A, Datta AG (2004) Attenuation of oxidative stress-induced changes in thalassemic erythrocytes by vitamin E. Polish J Pharmacol 56:85–96

    CAS  Google Scholar 

  90. Grinberg LN, Rachmilewitz EA, Newmark H (1994) Protective effects of rutine against hemoglobin oxidation. Biochem Pharmacol 48:643–49

    CAS  PubMed  Google Scholar 

  91. Tesoriere L, D’Arpa D, Butera D, Allegra M, Renda D, Maggio A, Bongiorno A, Livrea MA (2001) Oral supplements of vitamin E improve measures of oxidative stress in plasma and reduce oxidative damage to LDL and erythrocytes in beta-thalassemia intermedia patients. Free Radic Res 34:529–540

    CAS  PubMed  Google Scholar 

  92. Stocker R, Keany J Jr (2004) Role of the oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    CAS  PubMed  Google Scholar 

  93. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Lonn ME, Dennis JM, Stocker R (2012) Actions of “antioxidants” in the protection against atherosclerosis. Free Radic Biol Med 53:863–884

    CAS  PubMed  Google Scholar 

  96. Badimon L, Martinez-Gonzalez J, Llorente-Cortes V, Rodriguez C, Padro T (2006) Cell biology and lipoproteins in atherosclerosis. Curr Mol Med 5:439–456

    Google Scholar 

  97. D’Alessio P (2004) Aging and the endothelium. Exp Gerontol 36:165–171

    Google Scholar 

  98. Loyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C (2010) American Heart Association Statistics Committee and Stroke Statistics Subcommittee. 2010. Update. Circulation 121:948–954

    Google Scholar 

  99. D’Alessio P (2002) Endothelium as a pharmacological target. Curr Op Invest Drugs 2:1720–1724

    Google Scholar 

  100. Carman CV, Jun CD, Salas A, Springer TA (2003) Endothelial cells proactively form microvilli-like membrane projections upon intracellular adhesion molecule-1 engagement of leukocyte LFA-1. J Immunol 171:6135–6144

    CAS  PubMed  Google Scholar 

  101. Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142:1–28

    CAS  PubMed  Google Scholar 

  102. Larsson DA, Baird S, Nyhalah JD, Yuan XM, Li W (2006) Oxysterol mixtures, in atheroma-relevant proportions, display synergistic and proapoptotic effects. Free Radic Biol Med 41:902–910

    CAS  PubMed  Google Scholar 

  103. Allegra M, Rattazzi A, Attanzio A, Tesoriere L, Livrea MA, D’Acquisto F (2012) Modulation of TH1/TH17 equilibrium in vitro by indicaxanthin from Opuntia ficus indica (L. Mill). Free Radic Biol Med 53 (Suppl 1):S47

    Google Scholar 

  104. Baldassano S, Tesoriere L, Rotondo A, Serio R, Livrea MA, Mulè F (2010) Inhibition of the mechanical activity of mouse ileum by cactus pear (Opuntia Ficus Indica, L, Mill.) fruit extract and its pigment indicaxanthin. J Agric Food Chem 58:7565–7571

    CAS  PubMed  Google Scholar 

  105. Baldassano S, Rotondo A, Serio R, Livrea MA, Tesoriere L, Mulè F (2011) Inhibitory effects of indicaxanthin on mouse ileal contractility: analysis of the mechanism of action. Eur J Pharmacol 658:200–205

    CAS  PubMed  Google Scholar 

  106. Lin HJ, Zuo T, Chao JR, Peng Z, Asamoto LK, Yamashita SS, Huang TH (2009) Seed in soil, with an epigenetic view. Biochim Biophys Acta 1790:920–924

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Dolinoy DC Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307

    CAS  PubMed  Google Scholar 

  108. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    CAS  PubMed  Google Scholar 

  109. Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting epigenome. Curr Drug Targets 12:1925–1956

    CAS  PubMed  Google Scholar 

  110. Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G et al (2012) Phytochemical antioxidants modulate mammalian cellular epigenome:implications in health and disease. Antiox Redox Signal 17:327–339

    CAS  Google Scholar 

  111. Moriarty-Craige SE, Jones DP (2004) Extracellular thiols and tiol/disulfide redox in metabolism. Annu Rev Nutr 24:481–509

    CAS  PubMed  Google Scholar 

  112. Martínez-González MA, García-López M, Bes-Rastrollo M, Toledo E, Martínez-Lapiscina EH, Delgado-Rodriguez M, Vazquez Z, Benito S, Beunza JJ (2011) Mediterranean diet and the incidence of cardiovascular disease: a Spanish cohort. Nutr Metab Cardiovasc Dis 21:237–244

    PubMed  Google Scholar 

  113. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337:a1344

    PubMed Central  PubMed  Google Scholar 

  114. Naselli F, Modica M, Attanzio A, Caradonna F, Gentile C, Tesoriere L, Livrea MA (2012) Pro-apoptotic activity of the phytochemical Indicaxanthin on colorectal carcinoma cells (Caco-2) and epigenetic CpG demethylation of the promoter and reactivation of the expression of p16. 56th National Meeting of the Italian Society of Biochemistry and Molecular Biology, Chieti

    Google Scholar 

  115. Draht MX, Riedl RR, Niessen H, Carvalho B, Meijer GA, Herman JG, van Engeland M, Melotte V, Smits KM (2012) Promoter CpG island methylation markers in colorectal cancer: the road ahead. Epigenomics 4:179–194

    CAS  PubMed  Google Scholar 

  116. Matsuda Y (2008) Molecular mechanism underlying the functional loss of cyclin-dependent kinase inhibitors p16 and p27 in hepatocellular carcinoma. World J Gastroenterol 14:1734–1740

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Zang JJ, Xie F, Xu JF, Qin YY, Shen RX, Yang JM, He J (2011) P16 gene hypermethylation and hepatocellular carcinoma: a systematic review and meta-analysis. World J Gastroenterol 17:3043–3048

    PubMed Central  PubMed  Google Scholar 

  118. Shima K, Nosho K, Baba Y, Cantor M, Meyerhardt JA, Giovannucci EL, Fuchs CS, Ogino S (2011) Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: cohort study and literature review. Int J Cancer 128:1080–1094

    PubMed Central  CAS  PubMed  Google Scholar 

  119. von Elbe JH, Klement JT, Amundson CH, Cassens RG, Lindsay RC (1974) Evaluation of betalain pigments as sausage colorants. J Food Sci 39:128–132

    CAS  Google Scholar 

  120. von Elbe JT, Schwartz SJ (1981) Absence of mutagenic activity and a short term toxicity study of beet pigments as food colorants. Arch Toxicol 49:93–98

    CAS  PubMed  Google Scholar 

  121. Patkai G, Barta J (1997) Decomposition of anticarcinogen factors of the beetroot during juice and nectar productions. Canc Lett 114:105–106

    CAS  Google Scholar 

  122. Reynoso R, Garcia FA, Morales D, de Mejia Gonzales E (1997) Stability of betalain pigments from a Cactacea fruit. J Agric Food Chem 45:2884–2889

    CAS  Google Scholar 

  123. Haveland-Smith RB (1981) Evaluation of the genotoxicity of some natural food colours using bacterial assays. Mutat Res 91:285–289

    CAS  PubMed  Google Scholar 

  124. Reynoso RC, Giner TV, de Mejia Gonzales E (1999) Safety of a filtrate of fermented Garambullo fruit: biotransformation and toxicity studies. Food Chem Toxicol 37:825–830

    CAS  PubMed  Google Scholar 

  125. Trachootham D, Lu W, Ogasawara MA, Rivera-Del Valle N, Huang P (2008) Redox regulation of cell survival. Antiox Redox Signal 1:1343–1347

    Google Scholar 

  126. Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794

    CAS  PubMed  Google Scholar 

  127. Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Dianzani U (2003) 4-Hydroxynonenal from pathology to physiology. Mol Aspects Med 24:213–218

    Google Scholar 

  129. Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM (2012) Cell signaling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442:453–464

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Jiang F, Zhang Y, Dusting GJ (2011) NADPH-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    CAS  PubMed  Google Scholar 

  131. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  132. Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulationof reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11:2607–2619

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Schilder Y, Heiss EH, Schachner D, Ziegler J, Reznicek G, Sorescu D, Dirsch VM (2009) NADPH oxidases 1 and 4 mediate cellular senescence induced by resveratrol in human endothelial cells. Free Radic Biol Med 46:1598–1606

    CAS  PubMed  Google Scholar 

  134. Konishi T (2011) From herb to kitchen and bedside: food factors are pharmacological molecules with antioxidant activity. Free Radic Res 45:863–864

    CAS  PubMed  Google Scholar 

  135. Moreno DA, Garcia-Viguera C, Gil JI, Gil-Izquierdo A (2008) Betalains in the era of global agri-food science, technology and nutritional health. Phytochem Rev 7:261–280

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Livrea PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Livrea, M., Tesoriere, L. (2015). Indicaxanthin Dietetics: Past, Present, and Future. In: Chen, C. (eds) Pigments in Fruits and Vegetables. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2356-4_7

Download citation

Publish with us

Policies and ethics