Skip to main content

The Betalain Secondary Metabolic Network

  • Chapter
  • First Online:
Pigments in Fruits and Vegetables

Abstract

Betalains are a class of red and yellow pigments that replace the anthocyanins in most of the core families of the Caryophyllales order. No species is known that produces both pigments. The betalains color flowers, fruits, and epidermal tissues and respond to the same signals that anthocyanin pigments do. Many minor but important crops produce betalains including beets, quinoa, amaranth, spinach, and Opuntia. The evolutionary origin of this pathway is largely a mystery whose secrets are slowly being revealed. Betalains are based on tyrosine, as opposed to the phenylalanine-based anthocyanins. In this pathway, tyrosine is converted to l-3,4-dihydroxyphenylalanine (l-DOPA) via an unknown enzyme. l-DOPA is converted to the yellow compound, betalamic acid. Another molecule of l-DOPA is converted to colorless cyclo-DOPA. Betalamic acid and cyclo-DOPA condense to form the red betacyanins. If cyclo-DOPA is unavailable, betalamic acid will condense with other amine groups to form the yellow betaxanthins. Here, we discuss: the genetics of betalains; what is known about the discovery and function of biosynthetic genes encoding, an l-DOPA dioxygenase, a cytochrome P450, and several UDP glucosyltransferases; available resources for betalain research; and finally, the holes in our knowledge that need to be filled in through future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clement JC, Mabry TJ (1996) Pigment evolution in the Caryophyllales: a systematic overview. Bot Acta 109:360–367

    Article  CAS  Google Scholar 

  2. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269

    Article  CAS  PubMed  Google Scholar 

  3. Cai Y, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the Amaranthaceae. J Agric Food Chem 51:2288–2294

    Article  CAS  PubMed  Google Scholar 

  4. Herbach KM, Stintzing FC, Carle R (2006) Betalain stability and degradation—structural and chromatic aspects. J Food Sci 71:41–50

    Article  Google Scholar 

  5. Cuenoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18 S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am J Bot 89:132–144

    Article  CAS  PubMed  Google Scholar 

  6. Brockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE (2011) Complex pigment evolution in the Caryophyllales. New Phytol 190(4):854–864

    Article  CAS  PubMed  Google Scholar 

  7. Christinet L, Burdet FX, Zaiko M, Hinz U, Zrÿd JP (2004) Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol 134:265–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hatlestad GJ, Sunnadeniya RM, Gonzalez A, Akhavan NA, Goldman IL, McGrath JM, Lloyd AM (2011) The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet 44(7):816–820

    Article  Google Scholar 

  9. Schliemann W, Kobayashi N, Strack D (1999) The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiol 119:1217–1232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vogt T, Grimm R, Strack D (1999) Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J 19:509–521

    Article  CAS  PubMed  Google Scholar 

  11. Isayenkova J, Wray V, Nimtz M, Strack D, Vogt T (2006) Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris. Phytochemistry 67:1598–1612

    Article  CAS  PubMed  Google Scholar 

  12. Sasaki N, Wada K, Koda T, Kasahara K, Adachi T, Ozeki Y (2005) Isolation and characterization of cDNAs encoding an enzyme with glucosyltransferase activity for cyclo-DOPA from four O’clocks and feather cockscombs. Plant Cell Physiol 46(4):666–670

    Article  CAS  PubMed  Google Scholar 

  13. Korner A, Pawelek J (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217:1163–1165

    Article  CAS  PubMed  Google Scholar 

  14. Steiner U, Schliemann W, Böhm H, Strack D (1999) Tyrosinase involved in betalain biosynthesis of higher plants. Planta 208:114–124

    Article  CAS  Google Scholar 

  15. Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  PubMed  Google Scholar 

  16. Vaughn KC, Lax AR, Duke SO (1988) Polyphenol oxidase: the chloroplast enzyme with no established function. Physiol Plant 72:659–665

    Article  CAS  Google Scholar 

  17. Keller W (1936) Inheritance of some major color types in beets. J Agric Res 52:27–38

    Google Scholar 

  18. Rheinberger H (2000) Mendelian inheritance in Germany between 1900 and 1910. The case of Carl Correns (1864–1933). C R Acad Sci III 323:1089–1096

    Article  CAS  PubMed  Google Scholar 

  19. Showalter HM (1934) Self flower color inheritance and mutation in Mirabilis jalapa. Genetics 19:568–580

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Prakken R (1944) Contribution to the genetics and cytology of Mirabilis. Hereditas 30:201–212

    Article  Google Scholar 

  21. Engels JMM, Kester WNM, Spitters CJT, Vosselman L, Zeven AC (1975) Investigations of the inheritance of flower variegation in Mirabilis jalapa L. 1. General introduction and 2. Inheritance of color in uniformly colored flowers. Euphytica 24:1–5

    Article  Google Scholar 

  22. Goldman IL, Austin D (2000) Linkage among the R, Y and BI loci in table beet. Theor Appl Genet 100:337–343

    Article  Google Scholar 

  23. Trezzini GF, Zrÿd JP (1990) Portulaca grandiflora: a model system for study of the biochemistry and genetics of betalain synthesis. Acta Hortic 280:581–585

    Google Scholar 

  24. Mueller LA, Hinz U, Zrÿd JP (1997) The formation of betalamic acid and muscaflavin by recombinant dopa-dioxygenase from Amanita. Phytochemistry 44:567–569

    Article  CAS  Google Scholar 

  25. Shin KS, Murthy HN, Heo JW, Paek KY (2003) Induction of betalain pigmentation in hairy roots of red beet under different radiation sources. Biol Plant 47:149–152

    Article  CAS  Google Scholar 

  26. Scherer GFE, Holk A (2000) NO donors mimic and NO inhibitors inhibit cytokinin action in betalaine accumulation in Amaranthus caudatus. Plant Growth Regul 32:345–350

    Article  CAS  Google Scholar 

  27. Suresh B, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2004) Polyamine and methyl jasmonate-induced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in bubble column reactor and studies on efflux of pigments. Process Biochem 39:2091–2096

    Article  CAS  Google Scholar 

  28. Savitha BC, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2006) Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 41:50–60

    Article  CAS  Google Scholar 

  29. Mukundan U, Bhide V, Dawda H (1999) Production of betalains by hairy root cultures of Beta vulgaris. L. In: Fu TJ, Singh G, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Academic/Plenum, New York, pp 121–127. (ISBN 0-306-46100-5)

    Chapter  Google Scholar 

  30. Vogt T, Ibdah M, Schmidt J, Wray V, Nimtz M, Strack D (1999) Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry 52:583–592

    Article  CAS  PubMed  Google Scholar 

  31. Zhao SZ, Sun H, Chen M, Wang B (2010) Light-regulated betacyanin accumulation in euhalophyte Suaeda salsa calli. Plant Cell Tiss Organ Cult 102:99–107

    Article  CAS  Google Scholar 

  32. Hinz UG, Fivaz J, Girod PA, Zrÿd JP (1997) The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in Amanita muscaria and its regulation. Mol Gen Genet 256:1–6

    Article  CAS  PubMed  Google Scholar 

  33. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Article  CAS  PubMed  Google Scholar 

  34. Lewellen RT (2004) Registration of Rhizomania resistant, monogerm populations C869 and C869CMS sugarbeet. Crop Sci 44:357–358

    Article  Google Scholar 

  35. Vogt T (2002) Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta 214:492–495

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki N, Abe Y, Goda Y, Adachi T, Kasahara K, Ozeki Y (2009) Detection of DOPA 4,5-Dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant Cell Physiol 50(5):1012–1016

    Article  CAS  PubMed  Google Scholar 

  37. Gandía-Herrero F, García-Carmona F (2012) Characterization of recombinant Beta vulgaris 4,5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta 236:91–100

    Article  PubMed  Google Scholar 

  38. Harris NN, Javellana J, Davies KM, Lewis KM, Jameson PE, Deroles SC, Calcott KE, Gould KS, Schwinn KE (2012) Betalain production is possible in anthocyanin producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol 12:34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. McGrath J, Trebbi D, Fenwick A, Panella L, Schulz B, Laurent V, Barnes S, Murray S (2007) An open-source first-generation molecular genetic map from a sugarbeet x table beet cross and its extension to physical mapping. Crop Sci 47:S27–S44

    Article  Google Scholar 

  40. McGrath JM, Shaw RS, de los Reyes BG, Weiland JJ (2004) Construction of a sugar beet BAC library from a hybrid with diverse traits. Plant Mol Biol Rep 22:23–28

    Article  CAS  Google Scholar 

  41. Dohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H (2012) Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). Plant J 70(3):528–540

    Article  CAS  PubMed  Google Scholar 

  42. Stafford HA (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci 101:91–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Lloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hatlestad, G., Lloyd, A. (2015). The Betalain Secondary Metabolic Network. In: Chen, C. (eds) Pigments in Fruits and Vegetables. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2356-4_6

Download citation

Publish with us

Policies and ethics