Skip to main content

Carotenoids in Human Nutrition

  • Chapter
  • First Online:
Pigments in Fruits and Vegetables

Abstract

Carotenoids are the colorful pigments abundant in fruits and vegetables that constitute an important part of the human diet. Decades of research on carotenoids has improved our understanding of the role of these ubiquitous pigments, which have emerged as important players in the fight against chronic and infectious diseases. This chapter describes the many facets of carotenoids including their occurrence and main dietary sources, the efficiency of absorption, and conversion to vitamin A. The role of conversion enzymes, the carotenoid oxygenases (BCMO1 and BCDO2), is explained, as well as the importance of carotenoid metabolites as bioactive compounds in the regulation of retinoid actions in the body. Their vital role as a source of vitamin A is reviewed in the context of increased need to prevent vitamin A deficiency in pregnancy and infancy, especially in developing countries. Specific functions in the macula and lens of the eye, in the corpus luteum of the ovary, and in skin are discussed. A description of the associations of plasma and dietary carotenoids with the risk of various acute and chronic diseases and conditions (cognitive decline, cancer, cardiovascular disease, diabetes, obesity, macular degeneration) is provided, along with explanations for possible mechanisms of action. Specifically, their antioxidant function in conditions of oxidative stress and inflammation is examined. The possibility of toxic effects for some carotenoids under certain circumstances is considered. Our knowledge of carotenoids continues to evolve with emerging scientific evidence, and a better understanding of these important plant pigments may improve human health and well-being worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendich A (1993) Biological functions of carotenoids. In: Canfield LM et al (eds) Carotenoids in human health. New York Academy of Sciences, New York, pp 61–67

    Google Scholar 

  2. Davies BH (1991) Carotenoid metabolism as a preparation for function. Pure Appl Chem 63:131–140

    CAS  Google Scholar 

  3. Slifka KA, Bowen PE, Stacewicz-Sapuntzakis M, Crissey SD (1999) A survey of serum and dietary carotenoids in captive wild animals. J Nutr 129:380–390

    CAS  PubMed  Google Scholar 

  4. Korytko PJ, Rodvold KA, Crowell JA, Stacewicz-Sapuntzakis M, Diwadkar-Navsariwala V, Bowen PE, Schalch W, Levine BS (2003) Pharmacokinetics and tissue distribution of orally administered lycopene in male dogs. J Nutr 133:2788–2792

    CAS  PubMed  Google Scholar 

  5. McGraw KJ (2006) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1, Mechanisms and measurements. Harvard University Press, Cambridge, pp 177–242

    Google Scholar 

  6. von Lintig J (2012) Provitamin A metabolism and functions in mammalian biology. Am J Clin Nutr 96(suppl):1234–1244

    Google Scholar 

  7. Holden JM, Eldridge AL, Beecher GR, Buzzard I, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of U.S. Foods: an update of database. J Food Comp Anal 12:169–196

    CAS  Google Scholar 

  8. Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL, Schwartz SJ, White WS (2004) Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressing as measured by electrochemical detection. Am J Clin Nutr 80:396–403

    CAS  PubMed  Google Scholar 

  9. Block G (1994) Nutrient sources of provitamin A carotenoids in the American diet. Am J Epidemiol 139:290–293

    CAS  PubMed  Google Scholar 

  10. Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK (2012) Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet 122:222–229

    Google Scholar 

  11. Kopsell DA, Kopsell DE (2006) Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci 11:499–507

    CAS  PubMed  Google Scholar 

  12. Haskell MJ (2012) The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion-evidence in humans. Am J Clin Nutr 96(suppl):1193S–203S

    CAS  PubMed  Google Scholar 

  13. Lindqvist A, Sharvill J, Sharvill DE, Andersson S (2007) Loss-of-function mutation in carotenoid 15,15′-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A. J Nutr 137:2346–2350

    CAS  PubMed  Google Scholar 

  14. Tang G (2012) Techniques for measuring vitamin A activity from β-carotene. Am J Clin Nutr 96(suppl):1185S–1188S

    CAS  PubMed  Google Scholar 

  15. Food and Nutrition Board, Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC, pp 82–161

    Google Scholar 

  16. Amengual J, Lobo GP, Golczak M, Li HNM, Klimova T, Hoppel CL, Wyss A, Palczewski K, von Lintig J (2011) A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 25: 948–959

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Harrison EH, dela Sena C, Eroglu A, Fleshman MK (2012) The formation, occurrence, and function of β-apocarotenoids: β-carotene metabolites that may modulate nuclear receptor signaling. Am J Clin Nutr 96(suppl):1189S–1192S

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Fleshman MK, Lester GE, Riedl KM, Kopec RE, Narayanasamy S, Curley RW, Schwartz SJ, Harrison EH (2011) Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. J Agric Food Chem 59:4448–4454

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Kopec RE, Riedl KM, Harrison EH, Curley RW Jr, Hruszkewycz DP, Clinton CK, Schwartz SJ (2010) Identification and quantification of apolycopenals in fruits, vegetables and human plasma. J Agric Food Chem 58:3290–3296

    PubMed Central  CAS  PubMed  Google Scholar 

  20. World Health Organization (WHO) (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO global database on vitamin A deficiency, pp 1–55. www.whqlibdoc.who.int/publications/2009/9789241598019_eng.pdf

  21. WHO (2012) http://www.who.int/nutrition/topics/vad/en/index.html. Accessed 27 Dec 2012

  22. Haque R, Ahmed T, Wahed MA, Mondal D, Hamidur Rahman ASM, Albert MJ (2010) Low dose β-carotene supplementation and deworming improve serum vitamin A and β-carotene concentrations in preschool children of Bangladesh. J Health Popul Nutr 28(3):230–237

    PubMed Central  PubMed  Google Scholar 

  23. Arroyave G, Mejia LA (2010) Five decades of vitamin A studies in the region of Central America and Panama. Food Nutr Bull 31:118–129

    PubMed  Google Scholar 

  24. Mayo-Wilson E, Imdad A, Herzer K, Yakoob MY, Bhutta ZA (2011) Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: systematic review and meta-analysis. BMJ 343:d5094. doi:10.1136/bmj.d5094. Pubmed PMID: 21868478

    PubMed Central  PubMed  Google Scholar 

  25. Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D (2007) A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr 137:1320–1327

    CAS  PubMed  Google Scholar 

  26. Hotz C, Loechl C, Lubowa A, Tumwine JK, Ndeezi G, Nandutu Masawi A, Baingana R, Carriquiry A, de Brauw A, Meenakshi JV, Gilligan DO (2012) Introduction of β-carotene-rich orange sweet potato in rural Uganda resulted in increased vitamin A intakes among children and women and improved vitamin A status among children. J Nutr 142:1871–1880

    CAS  PubMed  Google Scholar 

  27. Jamil KM, Brown KH, Jamil M, Peerson JM, Keenan AH, Newman JW, Haskell MJ (2012) Daily consumption of orange-fleshed sweet potato for 60 days increased plasma β-carotene concentration but did not increase total body vitamin A pool size in Bangladeshi women. J Nutr 142:1896–18902

    CAS  PubMed  Google Scholar 

  28. Sundram K, Sambanthamurthi R, Tan YA (2003) Palm fruit chemistry and nutrition. Asia Pac J Clin Nutr 12:355–362

    CAS  PubMed  Google Scholar 

  29. Atinmo T, Bakre AT (2003) Palm fruit in traditional African food culture. Asia Pac J Clin Nutr 12:350–354

    PubMed  Google Scholar 

  30. Rice AL, Burns JB (2010) Moving from efficacy to effectiveness: red palm oil’s role in preventing vitamin A deficiency. J Am Coll Nutr 29:302S–313S

    CAS  PubMed  Google Scholar 

  31. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A β-carotene biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  32. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased provitamin A content. Nat Biotechnol 23:482–487

    CAS  PubMed  Google Scholar 

  33. Tang G, Hu Y, Yin SA, Wang Y, Dallal GE, Grusak MA, Russell RM (2012) β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children. Am J Clin Nutr 96:658–664

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA (2009) Golden Rice is an effective source of vitamin A. Am J Clin Nutr 89:1776–1783

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Blount JD, Houston DC, Sural PF, Pape Moller A (2004) Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proc R Soc Lond B 271:S79–S81

    Google Scholar 

  36. Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC (1998) Tetrachromancy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633

    CAS  PubMed  Google Scholar 

  37. Stephen ID, Coetzee V, Perrett DI (2011) Carotenoid and melanin pigment coloration affect perceived human health. Evol Human Behav 32:216–227

    Google Scholar 

  38. Kaplan LA, Lau JM, Stein EA (1990) Carotenoid composition, concentrations, and relationships in various human organs. Clin Physiol Biochem 8:1–10

    CAS  PubMed  Google Scholar 

  39. Stahl W, Schwarz W, Sundquist AR, Sies H (1992) Cis-trans isomers of lycopene and β-carotene in human serum and tissues. Archiv Biochem Biophys 294:173–177

    CAS  Google Scholar 

  40. Palan P, Naz R (1996) Changes in various antioxidant levels in human seminal plasma related to immunofertility. Arch Androl 36:139–143

    CAS  PubMed  Google Scholar 

  41. Gupta NP, Kumar R (2002) Lycopene therapy in idiopathic male infertility: a preliminary report. Int J Urol Nephrol 34:369–372

    CAS  Google Scholar 

  42. Schweigert FJ (2003) Research note: changes in the concentration of β-carotene, α-tocopherol and retinol in the bovine corpus luteum during the ovarian cycle. Arch Anim Nutr 57:307–310

    CAS  Google Scholar 

  43. O’Shaughnessy PJ, Wathes DC (1998) Bovine luteal cell activity in culture. Maintenance of steroidogenesis by high density lipoprotein containing high or low beta-carotene concentrations. Anim Reprod Sci 17:165–176

    Google Scholar 

  44. Rapoport R, Sklan D, Wolfeson D, Shaham-Albancy A, Hanukoglu I (1998) Antioxidant capacity is correlated with steroidogenic status of the corpus luteum during the bovine estrous cycle. Biochem Biophys Acta 1380:133–140

    CAS  PubMed  Google Scholar 

  45. Folman Y, Rosenberg M, Ascarelli I, Kaim M, Herz Z (1983) The effect of dietary and climatic factors on fertility, and on plasma progesterone and oestradiol-17 beta levels in dairy cows. J Steroid Biochem 19:863–868

    CAS  PubMed  Google Scholar 

  46. Csapo AI, Pulkkinen M (1978) Indispensability of the human corpus luteum in the maintenance of early pregnancy: luteectomy evidence. Obstet Gynecol Surv 33:69–81

    CAS  PubMed  Google Scholar 

  47. West KP Jr, Katz J, Khatry SK, LeClerq SC, Pradhan EK, Shrestha SR, Connor PB, Dali SM, Christian P, Pokhrel RP, Sommer A (1999) Double blind, cluster randomized trial of low dose supplementation with vitamin A or β-carotene on mortality related to pregnancy in Nepal. BMJ 318:570–575

    PubMed Central  CAS  PubMed  Google Scholar 

  48. West KP Jr, Christian P, Labrique AB, Rashid M, Shamin AA, Klemm RDW, Massie AB, Mehra S, Schulze KJ, Ali H, Ullah B, Wu LSF, Katz J, Banu H, Akhter HH, Sommer A (2011) Effects of vitamin A or beta carotene supplementation on pregnancy-related mortality and infant mortality in rural Bangladesh. A cluster randomized trial. JAMA 305:1986–1995

    CAS  PubMed  Google Scholar 

  49. Thorne-Lyman A, Fawzi WW (2012) Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatric Perinatal Epidemiol 26(Suppl 1):36–54

    Google Scholar 

  50. Villamor E, Koulinska IN, Aboud S, Murrin C, Bosch RJ, Manji KP, Fawzi WW (2010) Effect of vitamin supplements on HIV shedding in breast milk. Am J Clin Nutr 92:881–886

    PubMed Central  CAS  PubMed  Google Scholar 

  51. WHO (2011) Guideline: vitamin A supplementation in pregnant women. http://www.who.int/elena/titles/vitamina_pregnancy/en/. Accessed 28 Dec 2012

  52. Patton S, Canfield LM, Huston GE, Ferris AM, Jensen RG (1990) Carotenoids of human colostrums. Lipids 25:159–165

    CAS  PubMed  Google Scholar 

  53. Canfield LM, Clandinin MT, Davies DP, Fernandez MC, Jackson J, Hawkes J, Goldman WJ, Pramuk K, Reyes H, Sablan B, Sonobe T, Bo X (2003) Multinational study of major breast milk carotenoids of healthy mothers. Eur J Nutr 42:133–141

    CAS  PubMed  Google Scholar 

  54. Azar M, Basu A, Jenkins AJ, Nankervis AJ, Hanssen KF, Scholz H, Henriksen T, Garg SK, Hammad SM, Scardo JA, Aston CE, Lyons TJ (2011) Serum carotenoids and fat-soluble vitamins in women with type 1 diabetes and preeclampsia: a longitudinal study. Diabetes Care 34:1258–1264

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Palan PR, Mikhail MS, Romney SL (2001) Placental and serum levels of carotenoids in preeclampsia. Obstet Gynecol 98:459–462

    CAS  PubMed  Google Scholar 

  56. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49. doi:10.1186/1477-7827-10-49. Pubmed PMID: 22748101

    PubMed Central  PubMed  Google Scholar 

  57. Bohm F, Edge R, Truscott G (2012) Interactions of dietary carotenoids with activated (singlet) oxygen and free radicals: potential effects for human health. Mol Nutr Food Res 56:205–216

    PubMed  Google Scholar 

  58. Gruszecki W (2010) Carotenoids in lipid membranes. In: Landrum J (ed) Carotenoids: physical, chemical and biological functions and properties. CRC Press, Boca Raton, pp 19–30

    Google Scholar 

  59. Edge R, Truscott G (2010) Properties of carotenoid radicals and excited states and their potential role in biological systems. In: Landrum J (ed) Carotenoids: physical, chemical and biological functions and properties. CRC Press, Boca Raton, pp 283–308

    Google Scholar 

  60. Bohm F, Edge R, McGarvey D, Truscott T (1998) β-carotene with vitamins E and C offers synergistic cell protection against NO x . FEBS Lett 436:387–389

    CAS  PubMed  Google Scholar 

  61. Bohm F, Edge R, Truscott G (2012) Interactions of dietary carotenoids with singlet oxygen (1O2) and free radicals: potential effects for human health. Acta Biochim Pol 59:27–30

    PubMed  Google Scholar 

  62. Walston J, Xue Q, Semba R, Ferrucci L, Cappola A, Ricks M, Guraink J, Fried L (2006) Serum antioxidants, inflammation, and total mortality in older women. Am J Epidemiol 163:18–26

    CAS  PubMed  Google Scholar 

  63. Holt E, Steffen L, Moran A, Basu S, Steinberger J, Ross J, Hong C, Sinaiko A (2009) Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc 109:414–421

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Thomson C, Stendell-Hollis N, Rock C, Cussler E, Flatt S, Pierce J (2007) Plasma and dietary carotenoids are associated with reduced oxidative stress in women previously treated for breast cancer. Cancer Epidemiol Biomarkers Prev 16:2006–2015

    Google Scholar 

  65. Hozawa A, Jacobs D, Steffes M, Gross M, Steffen L, Duk-Hee L (2007) Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: The Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study. Clinic Chem 53:447–455

    CAS  Google Scholar 

  66. D’Adamo C, Miller R, Shardell M, Orwig D, Hochberg M, Ferrucci L, Semba R, Yu-Yahiro J, Magaziner J, Kicks G (2012) Higher serum concentrations of dietary antioxidants are associated with lower levels of inflammatory biomarkers during the year after hip fracture. Clin Nutr 31:659–665

    PubMed Central  PubMed  Google Scholar 

  67. Kim J-H, Na H-J, Kim C-K, Kim J-Y, Ha K-S, Lee H, Chung H-T, Kwon H, Kwaon Y-G, Kim Y-M (2008) The non-provitamin A carotenoid, lutein, inhibits NF-κB-inducing kinase pathways: role of H2O2 in NF-κB activation. Free Radic Biol Med 45(6):885–896

    CAS  PubMed  Google Scholar 

  68. Izumi-Nagai K, Nagai N, Ohgami K, Satfuka S, Ozawa Y, Tsubota K, Umezawa K, Ohno S, Oike Y, Ishida S (2007) Macular pigment lutein is anti-inflammatory in preventing choroidal neovascularization. Aterioscler Thromb Vasc Biol 27:2555–2562

    CAS  Google Scholar 

  69. Di Tomo P, Canali R, Ciavardelli D, Di Silvestre S, De Marco A, Giardinelli A, Pipino C, Di Pietro N, Virgili F, Pandolfi A (2012) β-carotene and lycopene affect endothelial response to TNF-α reducing nitro-oxidative stress and interaction with monocytes. Mol Nutr Food Res 56:217–227

    CAS  PubMed  Google Scholar 

  70. Rubin L, Chan G, Barrett-Reis B, Fulton A, Hansen R, Ashmeade T, Oliver R, Mackey A, Dimmit R, Hartmann E, Adamkin D (2012) Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J Perinatol 32:418–424

    CAS  PubMed  Google Scholar 

  71. Graydon R, Hogg RE, Chakravarthy U, Young I, Woodside J (2012) The effect of lutein- and zeaxanthin-rich foods vs supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: pilot studies of healthy volunteers. Br J Nutr 108:334–342

    CAS  PubMed  Google Scholar 

  72. Zhao X, Aldini G, Johnson E, Rasmussen H, Kraemer K, Woolf H, Musaeus N, Krinsky N, Russell R, Yeum K (2006) Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women. Am J Clin Nutr 83:163–169

    CAS  PubMed  Google Scholar 

  73. Basu A, Imrhan V (2007) Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. European J Clin Nutr 61:295–303

    CAS  Google Scholar 

  74. Dunstan J, Breckier L, Hale J, Lehmann H, Franklin P, Lyons G, Ching S, Mori T, Barden A, Prescott S (2007) Supplementation with vitamins C, E, beta-carotene and selenium has no effect on anti-oxidant status and immune responses in allergic adults: a randomized controlled trial. Clin Exp Allergy 37:180–187

    CAS  PubMed  Google Scholar 

  75. Rytter E, Vessby B, Asgard R, Ersson C, Moussavian S, Sjodin A, Abramsson-Zetterberg L, Moller L, Basu S (2010) Supplementation with a combination of antioxidants does not affect glycaemic control, oxidative stress or inflammation in type 2 diabetes subjects. Free Radic Res 44:1445–1453

    CAS  PubMed  Google Scholar 

  76. Meinke M, Friedrich A, Tscherch K, Haag S, Darvin M, Vollert H, Groth N, Lademann J, Rohn S (2013) Influence of dietary carotenoids on radical scavenging capacity of the skin and skin lipids. Eur J Pharmaceut Biopharm Dec 13; 84:365–373

    Google Scholar 

  77. Mayne S, Cartmel B, Scarmo S, Lin H, Leffell D, Welch E, Ermakov I, Bhosale P, Bernstein P, Getterman W (2010) Noninvasive assessment of dermal carotenoids as a biomarker of fruit and vegetable intake. Am J Clin Nutr 92:794–800

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Alaluf S, Heinrich U, Stahl W, Tronnier H, Wiseman S (2002) Dietary carotenoids contribute to normal human skin color and UV photosensitivity. J Nutr 132:399–403

    CAS  PubMed  Google Scholar 

  79. Stephen I, Smith M, Stirrat M, Perret D (2009) Facial skin coloration affects perceived health of human faces. Int J Primatol 30:845–857

    PubMed Central  PubMed  Google Scholar 

  80. Whitehead R, Ozakinci G, Stephen I, Perrett D (2012) Appealing to vanity: could potential appearance improvement motivate fruit and vegetable consumption? Am J Pub Health 102:207–211

    Google Scholar 

  81. Karthik S, Campbell-Davis D, Isherwood D (2006) Carotenemia in infancy and is association with prevalent feeding practices. Ped Dermatol 23:571–573

    Google Scholar 

  82. Takita Y, Ichimiya M, Hamamoto Y, Muto M (2006) A case of carotenemia associated with ingestion of nutrient supplements. J Dermatol 2:132–134

    Google Scholar 

  83. Hueber A, Rosentreter A, Severin M (2011) Canthaxanthin retinopathy: long-term observations. Ophthalmic Res 46:103–106

    CAS  PubMed  Google Scholar 

  84. Mathews-Roth M (1986) Beta-carotene therapy for erythropoetic protoporphyria and other photosensitivity diseases. Biochimie 68:875–884

    CAS  PubMed  Google Scholar 

  85. Stahl W, Sies H (2012) β-carotene and other carotenoids in protection from sunlight. Am J Clin Nutr 96(suppl):1179–1184

    CAS  PubMed  Google Scholar 

  86. Zussman J, Ahdout J, Kim J (2010) Vitamins and photoaging: do scientific data support their use? J Am Acad Dermatol 63:507–525

    CAS  PubMed  Google Scholar 

  87. Kopcke W, Krutmann J (2008) Protection from sunburn with β-carotene: a meta-analysis. Photochem Photobiol 84:284–288

    PubMed  Google Scholar 

  88. Darvin M, Fluhr J, Meinke M, Zastrow L, Sterry W, Lademann J (2011) Topical beta-carotene protects against infra-red-light-induced free radicals. Exper Dermatol 20:125–129

    CAS  Google Scholar 

  89. Kohl E, Steinbauer J, Landthaler M, Szeimies R (2011) Skin ageing. J Euro Acad of Dermatol Venereol (JEADV) 25:873–884

    CAS  Google Scholar 

  90. Purba M, Kouris-Blazos A, Wattanapenpalboon N, Lukito W, Rothenberg E, Steen B, Wahlqvist M (2001) Skin wrinkling: can food make a difference. J Am Coll Nutr 20:71–80

    CAS  PubMed  Google Scholar 

  91. Darvin M, Patzelt A, Gehse S, Schanzer S, Benderoth C, Sterry W, Lademann J (2008) Cutaneous concentration of lycopene correlates significantly with the roughness of skin. Eur J Pharmaceut Biopharmaceut 69:943–947

    CAS  Google Scholar 

  92. Evans J, Johnson E (2010) The role of phytonutrients in skin health. Nutrients 2:903–928

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Drasdo N, Fowler CW (1974) Non-linear projection of the retinal image in a wide-angle schematic eye. Br J Ophthalmol 58:709–714

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Bone R, Landrum J, Fernandez L, Tarsis S (1988) Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci 29:843–949

    CAS  PubMed  Google Scholar 

  95. Zeimer M, Dietzel M, Hense H, Helmes B, Austermann U, Pauleikhoff D (2012) Profiles of macular pigment optical density and their changes following supplemental lutein and zeaxanthin: new results from the LUNA study. Invest Ophthalmol Vis Sci 53:4852–4859

    CAS  PubMed  Google Scholar 

  96. Krinsky N, Landrum J, Bone R (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Ann Rev Nutr 23:171–201

    CAS  Google Scholar 

  97. Edge R, McGarvey D, Truscott G (1997) The carotenoids as antioxidants: a review. J Photochem Photobiol B Biol 41:189–200

    CAS  Google Scholar 

  98. Ahmed S, Lott M, Marcus D (2005) The macular xanthophylls. Surv Ophthalmol 50:183–193

    PubMed  Google Scholar 

  99. Bone R, Landrum J, Guerra L, Ruiz J (2003) Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr 133:992–998

    CAS  PubMed  Google Scholar 

  100. Ma L, Dou H-L, Wu Y-Q, Huang Y-M, Huang Y-B, Xu X-R, Zou Z-Y, Lin X-M (2012) Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. Br J Nutr 107:350–359

    CAS  PubMed  Google Scholar 

  101. Klein R, Chou C-F, Klein B, Zhang X, Meuer S, Saddine J (2011) Prevalence of age-related macular degeneration in the US population. Arch Ophthalmol 129:75–80

    PubMed  Google Scholar 

  102. Muni R, Altaweel M, Tennant M, Weaver B, Kertes P (2008) Agreement among Canadian retina specialists in the determination of treatment eligibility for photodynamic therapy in age-related macular degeneration. Retina 28:1421–1426

    PubMed  Google Scholar 

  103. Bone R, Landrum J (2010) Dose-dependent response of serum lutein and macular pigment optical density to supplementation of lutein esters. Arch Biochem Biophys 504:50–55

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Schalch W, Cohn W, Barker F, Kopcke W, Mellerio J, Bird A, Robson A, Fitzke F, van Kujk F (2007) Xanthophyll accumulation in the human retina during supplementation with lutein or zeaxanthin: the LUXEA (LUtein Xanthophyll Eye Accumulation) study. Arch Biochem Biophys 458:128–135

    CAS  PubMed  Google Scholar 

  105. Barlett H and Eperjesi F (2008) A randomized controlled trial investigating the effect of lutein and antioxidant dietary supplementation on visual function in healthy eyes. Clinical Nutr 27:218–227

    Google Scholar 

  106. Ma L, Yan S-F, Huang Y-M, Lu X-R, Qian F, Pang H-L, Xu X-R, Zou Z-Y, Dong P-C, Xiao X, Wang X, Sun T-T, Dou H-L, Lin X-M (2012) Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmol 119:2290–2297

    Google Scholar 

  107. Richer S, Stiles W, Statkute L, Pulido J, Frankowski J, Rudy D, Pei K, Tsipursky M, Nyland J (2004) Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 75:216–230

    PubMed  Google Scholar 

  108. Richer S, Stiles W, Graham-Hoffman K, Levin M, Ruskin D, Wrobel J, Park D-W, Thomas C (2011) Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration. Optometry 82:667–680

    PubMed  Google Scholar 

  109. Age-Related Eye Disease Study Group (2001) A randomized, placebo-controls clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. AREDS report no. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  110. Age-Related Eye Disease Study Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamin C and E and beta-carotene for age-related cataract with vision loss: AREDS report no. 9. Arch Ophthalmol 119:1439–1452

    Google Scholar 

  111. Evans J, Lawrenson J (2012) Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration (Review) The Cochrane Collaboration Cochrane Library 2012, Issue 6 www.thecochranelibrary.com John Wiley

  112. The Age-Related Eye Disease Study 2 (AREDS2) Research Group (2013) Lutein + Zeaxanthin and omega-3 fatty acids for age-related macular degeneration. The age-related eye disease study 2 (AREDS2) randomized clinical trial. JAMA 309:2005–2015

    Google Scholar 

  113. Loughman J, Davidson P, Molan J, Akkali M, Beatty S (2010) Macular pigment and its contribution to visual performance and experience. J Optometry 3:74–90

    Google Scholar 

  114. Hammond B, Fletcher L (2012) Influence of the dietary carotenoids lutein and zeaxanthin on visual performance: application to baseball. Am J Clin Nutr 96(Suppl):1207–1300

    CAS  PubMed  Google Scholar 

  115. Stringham J, Hammond B (2007) The glare hypothesis of macular pigment function. Optometry Vis Sci 84:859–864

    Google Scholar 

  116. Stringham J, Garcia P, Smith P, McLin L, Foutch B (2011) Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare and visual discomfort. Ophthalmol Vis Sci 52:7406–7415

    Google Scholar 

  117. Loughman J, Akkali M, Beatty S, Scanlon G, Davidson P, O’Dwyer V, Cantwell T, Major P, Stack J, Nolan J (2010) The relationship between macular pigment and visual performance. Vis Res 50:1249–1256

    PubMed  Google Scholar 

  118. Renzi L, Hammond B (2010) The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthal Physiol Opt 30:351–357

    Google Scholar 

  119. Ma L, Lin X-M, Zou Z-Y, Xu X-R, Li Y, Xu R (2009) A 12-week lutein supplementation improved visual function in Chinese people with long-term computer display light exposure. Br J Nutr 102:186–190

    CAS  PubMed  Google Scholar 

  120. Kvansakul J, Rodriguez-Camona M, Edgar D, Barker F, Kopcke W, Schalch W, Barbur J (2006) Supplmentation with the carotenoids lutein and zeaxanthin improves human visual performance. Ophthal Physiol Opt 26:362–371

    Google Scholar 

  121. Nolan J, Loughman J, Akkali M, Stack J, Scanlon G, Davidson P, Beatty S (2011) The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vis Res 51:459–469

    PubMed  Google Scholar 

  122. Loughman J, Nolan J, Howard A, Connolly E, Meagher K, Beatty S (2012) The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Invest Ophthalmol Vis Sci 53:7871–7880

    PubMed  Google Scholar 

  123. Barlett H, Eperjesi F (2007) Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease: a randomized controlled trial. Eur J Clin Nutr 61:1121–1127

    Google Scholar 

  124. Michael R, Bron A (2011) The ageing lens and cataract: a model of normal and pathological ageing. Phil Trans R Soc B 366:1278–1292

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Truscott R (2005) Age-related nuclear cataract: oxidation is the key. Exper Eye Res 80:709–725

    CAS  Google Scholar 

  126. Yeum K-J, Shang F, Schalch W, Russell R, Taylor A (1999) Fat-soluble nutrient concentrations in different layers of human cataractous lens. Curr Eye Res 19:502–505

    CAS  PubMed  Google Scholar 

  127. Bhosale P, Zhao D-Y, Bernstein P (2007) HPLC measurement of ocular carotenoid levels in human donor eyes in the lutein supplementation era. Invest Ophthalmol Vis Sci 48:543–549

    PubMed  Google Scholar 

  128. Barker F (2010) Dietary supplementation: effects on visual performance and occurrence of AMD and cataracts. Curr Med Res Opin 26:2011–2023

    CAS  PubMed  Google Scholar 

  129. Mares J, Voland R, Adler R, Tinker L, Millen A, Moeller S, Blodi B, Gehrs K, Wallace R, Chappell R, Meuhouser M, Sarto G (2010) Healthy diets and the subsequent prevalence of nuclear cataract in women. Arch Ophthalmol 128:738–749

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Milton R, Sperduto R, Clemons T, Ferris F (2006) Centrum use and progression of age-related cataract in the age-related eye disease study: a propensity score approach. AREDS report No. 21. Ophthalmology 113:1264–1270

    PubMed  Google Scholar 

  131. Olmedilla B, Granado F, Blanca I, Vaquero M, Cajigal C (2001) Lutein in patients with cataracts and age-related macular degeneration: a long term supplementation study. J Sci Food Agric 81:904–909

    CAS  Google Scholar 

  132. Olmedilla B, Granado F, Blanco I, Vaquero M (2003) Lutein, but not alpha tocopherol supplementation improves visual function in patients with age-related cataracts: a two-year double-blind, placebo-controlled pilot study. Nutrition 19:21–24

    CAS  PubMed  Google Scholar 

  133. Trumbo P, Ellwood K (2006) Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr 84:971–974

    CAS  PubMed  Google Scholar 

  134. Berson E (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34:1659–1676

    CAS  PubMed  Google Scholar 

  135. Berson E, Rosner B, Sandberg M, Weigel-DeFranco C, Brockhurst R, Hayes C, Johnson E, Anderson E, Johnson C, Guadio A, Willet W, Schaefer E (2010) Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 128:403–411

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Wittes J, Gorin M, Mayne S, McCarthy C, Sternberg P, Wall M (2011) Letter from the DSMC regarding a clinical trial of lutein in patients with retinitis pigmentosa. Arch Ophthalmol 129:675

    PubMed  Google Scholar 

  137. Dagnelie G, Zorge I, McDonald T (2000) Lutein improves visual function in some patients with retinal degeneration: a pilot study via the internet. Optometry 71:147–164

    CAS  PubMed  Google Scholar 

  138. Bahrami H, Melia M, Dagnelie G (2006) Lutein supplementation in retinitis pigmentosia: PC-based vision assessment in a randomized double-masked placebo-controlled clinical trial. BMC Ophthalmol 6:23. www.biochemicalcontrol.com/1471-2415-6-23

    PubMed Central  PubMed  Google Scholar 

  139. Aleman T, Duncan J, Bieber M, de Castro E, Marks D, Gardner L et al (2001) Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Invest Ophthalmol Vis Sci 42:1873–1881

    CAS  PubMed  Google Scholar 

  140. Sandberg M, Johnson E, Berson E (2010) The relationship of macular pigment optical density to serum lutein in retinitis pigmentosa. Invest Ophthalmol Vis Sci 51:1086–1091

    PubMed Central  PubMed  Google Scholar 

  141. Li S-Y, Fung F, Zhong J-F, Wong D, Chan H, Lo A (2012) Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies. Invest Opththalmol Vis Sci 53:5976–5984

    CAS  Google Scholar 

  142. Li S-Y, Fu Z-J, Ma H, Jang W-C, So K-F, Wong D, Lo A (2009) Effect of lutein on retinal neurons and oxidative stress in a model of acute retinal ischemia/reperfusion. Invest Ophthalmol Vis Sci 50:836–843

    PubMed  Google Scholar 

  143. Woo T, Li S-Y, Lai W, Wong D, Lo A (2013) Neuroprotective effects of lutein in a rat model of retinal detachment. Graefes Arch Clin Exp Ophthalmol 251:41–51

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Craft N, Haitema T, Garnett K, Fitch K, Dorey C (2004) Carotenoid, tocopherol and retinol concentrations in elderly human brain. J Nutr Health Aging 8:156–162

    CAS  PubMed  Google Scholar 

  145. Johnson E (2012) The possible role for lutein and zeaxanthin in cognitive function in the elderly. Am J Clin Nutr 96:1161S–1165S

    CAS  PubMed  Google Scholar 

  146. Ritchie K, Touchon J (2000) Mild cognition impairment: conceptual basis and current neurological status. Lancet 355:225–228

    CAS  PubMed  Google Scholar 

  147. Lahiri D, Greig N (2004) Lethal weapon: amyloid β-peptide, role in the oxidative stress and neurodegeneration of Alzheimer’s disease. Neurobiol Aging 25:581–587

    CAS  PubMed  Google Scholar 

  148. Farooqui T, Farooqui A (2009) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Aging Dev 130:203–215

    CAS  PubMed  Google Scholar 

  149. Thompson P, Vinters H (2012) Pathologic lesions in neurodegenerative diseases. Prog Mol Biol Trans Sci. 107:1–40

    CAS  Google Scholar 

  150. Plasman B, Williams J, Burke J, Holsinger T, Benjamin S (2010). Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med 153:182–193

    Google Scholar 

  151. Daviglus M, Bell C, Berrettini W, Bowen P, Connolly S, Cox N, Dunbar-Jacob J, Granieri E, Hunt G, McGarry K, Patel D, Potosky A, Sanders-Bush E, Silberbert D, Trevisan M (2010) National Institutes of Health State-of-the-Science Conference statement: preventing Alzheimer’s disease and cognitive decline. Ann Intern Med 153:176–181

    Google Scholar 

  152. Daviglus M, Plassman B, Pirzuda A, Bell C, Bowen P, Burke J, Connolly S, Dunbar-Jacob J, Granieri E, McGarry K, Patel D, Trevisan M, Williams J (2011) Risk factors and preventive interventions for Alzheimer’s disease. Arch Neurol 68:1185–1190

    PubMed  Google Scholar 

  153. Yaffe K (2007) Antioxidants and prevention of cognitive decline: does duration of use matter? Arch Intern Med 167:2167–2168

    PubMed  Google Scholar 

  154. Johnson E, McDonald K, Caldarella S, Chung H, Troen A, Snodderly D (2008) Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr Neurosci 11:75–83

    CAS  PubMed  Google Scholar 

  155. Li S-Y, Fu Z-J, Woo T, Wong D, Lo A (2012) Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke. Neurobiol Dis 45:624–632

    CAS  PubMed  Google Scholar 

  156. Li S-Y, Fu Z-J, Lo A (2012) Hypoxia-induced oxidative stress in ischemic retinopathy. Oxid Med Cell Longev 2012:426769. doi:10:1155/2012/426769

    PubMed Central  PubMed  Google Scholar 

  157. Greenberg E (1993) Retinoids or carotenoids: is there another choice? Prev Med 22:723–727

    CAS  PubMed  Google Scholar 

  158. Peto R, Doll R, Buckley J, Sporn M (1981) Can dietary beta-carotene materially reduce human cancer rates? Nature 290:201–208

    CAS  PubMed  Google Scholar 

  159. Wald N (1987) Retinol, beta-carotene and cancer. Cancer Surv 6:635–651

    CAS  PubMed  Google Scholar 

  160. Tanaka J, Shnimizu M, Moriwaki H (2012) Cancer prevention by carotenoids. Molecules 17:3202–3242

    CAS  PubMed  Google Scholar 

  161. Vainio H, Weiderpass E (2006) Fruit and vegetables in cancer prevention. Nutr Cancer 54:111–142

    CAS  PubMed  Google Scholar 

  162. Marques-Vidal P, Ravasco P, Camilo M (2006) Foodstuffs and colorectal cancer risk: a review. Clin Nutr 25:14–36

    PubMed  Google Scholar 

  163. Flood A, Rasotogi T, Wirfalt E, Mitrou P, Reedy J, Subar A, Kipnis V, Mouw T, Hollenbeck A, Leitzmann M, Schatzkin A (2008) Dietary patterns as identified by factor analysis and colorectal cancer among middle-age Americans. Am J Clin Nutr 88:176–184

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Heinonen O, Albanes D (1994) The effect of vitamin E and β-carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study Group. N Engl J Med 330:1029–1035

    Google Scholar 

  165. Omenn G, Goodman G, Thornquist M, Balmes J, Cullen M, Glass A, Koegh J, Meyskens F, Valanis B, Williams H et al (1996) Effects of a combination of β-carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155

    CAS  PubMed  Google Scholar 

  166. The ATBC Study Group (2003) Incidence of cancer and mortality following α-tocopherol and β-carotene supplementation. JAMA 290:476–485

    Google Scholar 

  167. Mayne S, Handelman G, Beecher G (1996) β-carotene and lung cancer promotion in heavy smokers: a plausible relationship. J Natl Cancer Inst 88:1513–1515

    CAS  PubMed  Google Scholar 

  168. Hennekens C, Buring J, Manson J, Stampfer M, Rosner B, Cook N, Belanger C, LaMotte F, Gaziano J, Ridker P et al (1996) Effects of a combination of β-carotene and vitamin A on lung cancer and cardiovascular disease. N Eng J Med 334:1150–1155

    Google Scholar 

  169. Kelloff G, Boone C, Crowell J, Steele V, Lubet R, Doody L, Malone W, Hawk E, Sigman C (1996) New agents for cancer prevention. J Cell Biochem Suppl 26:1–28.

    CAS  PubMed  Google Scholar 

  170. Ziegler R, Mayne S, Swanson C (1996) Nutrition and lung cancer. Cancer Causes Control 7:157–177

    CAS  PubMed  Google Scholar 

  171. Chatterjee M, Roy K, Janarthan M, Das S, Chatterjee M (2012) Biological activity of carotenoids: its implications in cancer risk and prevention. Curr Pharmaceut Biotech 13:180–190

    CAS  Google Scholar 

  172. Kelkel M, Schumacher M, Dicato M, Diederich M (2011) Antioxidant and anti-proliferative properties of lycopene. Free Rad Res 45:925–940

    CAS  Google Scholar 

  173. Sharoni Y, Linnewiel-Hermoni K, Khanin M, Salman H, Veprik A, Danilenko M, Levy J (2012) Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Mol Nutr Food Res 56:259–269

    CAS  PubMed  Google Scholar 

  174. Ford N, Erdman J (2012) Are lycopene metabolites metabolically active? Acta Biochim Pol 59:1–4

    CAS  PubMed  Google Scholar 

  175. Etminan M, Takkouche B, Caamano-Isoma F (2004) The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomark Prev 13:340–345

    CAS  Google Scholar 

  176. Ilic D, Misso M (2012) Lycopene for the prevention and treatment of benign prostatic hyperplasia and prostate cancer: a systematic review. Maturitas 72:269–276

    CAS  PubMed  Google Scholar 

  177. Conklin K (2003) Dietary antioxidants during cancer therapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer 37:1–18

    Google Scholar 

  178. Sahin K, Sahin N, Kucuk O (2010) Lycopene and chemotherapy toxicity. Nutr Cancer 62:988–995

    CAS  PubMed  Google Scholar 

  179. Block K, Koch A, Mead M, Tothy P, Newman R, Gyllenhaal C (2007) Impact of antioxidant supplementation on chemotherapeutic efficacy: a systematic review of the evidence from randomized controlled trials. Cancer Treatment Rev 33:407–418

    CAS  Google Scholar 

  180. Puri T, Goyal S, Julka K, S, Nair O, Sharma D, Roth G (2010) Lycopene in treatment of high-grade gliomas: a pilot study. Neurol India 58(1):20–23

    PubMed  Google Scholar 

  181. Meigs JB (2002) Epidemiology of the metabolic syndrome, 2002. Am J Manag Care 8(11 Suppl):283S–292S

    Google Scholar 

  182. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84:705–712

    CAS  PubMed  Google Scholar 

  183. Ford ES, Mokdad AH, Giles WH, Brown DW (2003) The metabolic syndrome and antioxidant concentrations: findings from the Third National Health and Nutrition Examination Survey. Diabetes 52:2346–2352

    CAS  PubMed  Google Scholar 

  184. Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Matsumoto H, Ando F, Shimokata H, Yano M (2008) Associations of serum carotenoid concentrations with the metabolic syndrome: interaction with smoking. Br J Nutr 100:1297–1306

    CAS  PubMed  Google Scholar 

  185. Coyne T, Ibiebele TI, Baade PD, McClintock CS, Shaw JE (2009) Metabolic syndrome and serum carotenoids: findings of a cross-sectional study in Queensland, Aust Br J Nutr 102:1668–1677

    CAS  Google Scholar 

  186. Sluijs I, Beulens JW, Grobbee DE, van der Schouw YT (2009) Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J Nutr 139:9879–9892

    Google Scholar 

  187. Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang W, Zonderman AB (2011) Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr 141:903–913

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Beydoun MA, Canas AJ, Beydoun HA, Chen X, Shroff MR, Zonderman AB (2012) Serum antioxidant concentrations and metabolic syndrome are associated among U.S. adolescents in recent national surveys. J Nutr 142:1693–1704

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Czernichow S, Vergnaud AC, Galan P, Arnaud J, Favier A, Faure H, Huxley R, Hercberg S, Ahluwalia N (2009) Effects of long-term antioxidant supplementation and association of serum antioxidant concentration with risk of metabolic syndrome in adults. Am J Clin Nutr 90:329–335

    CAS  PubMed  Google Scholar 

  190. Markovits N, Amotz AB, Levy Y (2009) The effect of tomato derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. IMAJ 11:598–601

    PubMed  Google Scholar 

  191. McEneny J, Wade L, Young IS, Masson L, Duthie G, McGinty A, McMaster C, Thies F (2013) Lycopene intervention reduced inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J Nutr Biochem 24:163–168. doi:10.1186/1475-2891-11-34

    CAS  PubMed  Google Scholar 

  192. Ghavipour M, Saedisomeolia A, Djalali M, Sotoudeh G, Eshraghyan MR, Moghadam AM, Wood LG (2013) Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr 109:2031-2035

    Google Scholar 

  193. Riso P, Visioli F, Grand S, Guarnieri S, Gardana C, Simonetti P, Porrini M (2006) Effect of tomato based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 54:2563–2566

    CAS  PubMed  Google Scholar 

  194. Palozza P, Simone R, Catalano A, Monego G, Barini A, Mele MC, Parrone N, Trombino S, Picci N, Ranelletti FO (2011) Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-κB nuclear binding and increase in PPARγ expression. J Nutr Biochem 22(3):259–268

    CAS  PubMed  Google Scholar 

  195. Gouranton E, Thabuis C, Riollet C, Malezet-Desmoulins C, El Yazidi C, Amiot MJ, Borel P, Landrier JF (2011) Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J Nutr Biochem 22:642–648

    CAS  PubMed  Google Scholar 

  196. Damms-Machado A, Weser G, Bischoff S (2012) Micronutrient deficiency in obese subjects undergoing low calorie diet. Nutr J 11:34. doi:10.1186/1475-2891-11-34. Pubmed PMID: 22657586

    Google Scholar 

  197. Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. Am J Clin Nutr 83:1265–1271

    CAS  PubMed  Google Scholar 

  198. Karppi J, Laukkanen JA, Makikallio TH, Ronkainen K, Kurl S (2013) Serum β-carotene and the risk of sudden cardiac death in men: a population-based follow-up study. Atherosclerosis 226:172–177

    CAS  PubMed  Google Scholar 

  199. Kim OY, Yoe HY, Kim HJ, Park JY, Kim JY, Lee SH, Lee JH, Lee KP, Jang Y, Lee JH (2010) Independent inverse relationship between serum lycopene concentration and arterial stiffness. Atherosclerosis 208:581–586

    CAS  PubMed  Google Scholar 

  200. Kim JY, Paik JK, Kim OY, Park HW, Lee JH, Jang Y, Lee JH (2011) Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. Atherosclerosis 215:189–195

    CAS  PubMed  Google Scholar 

  201. Karppi J, Laukkanen JA, Sivenius J, Ronkainen K, Kurl S (2012) Serum lycopene decreases the risk of stroke in men: a population based follow-up study. Neurology 79:1540–1547

    CAS  PubMed  Google Scholar 

  202. Biddle M, Moser D, Song EK, Heo S, Payne-Emerson H, Dunbar SB, Pressler S, Lennie T (2013) Higher dietary lycopene intake is associated with longer cardiac event-free survival in patients with heart failure. Eur J Cardiovasc Nurs 12:377–384

    Google Scholar 

  203. Palozza P, Catalano A, Simone RE, Mele MC, Cittadini A (2012) Effect of lycopene and tomato products on cholesterol metabolism. Ann Nutr Metab 61:126–134

    CAS  PubMed  Google Scholar 

  204. Karppi J, Kurl S, Laukkanen JA, Rissanen TH, Kauhanen J (2011) Plasma carotenoids are related to intima-media thickness of the carotid artery wall in men from eastern Finland. J Intern Med 270:478–485

    CAS  PubMed  Google Scholar 

  205. Xu XR, Zou ZY, Huang YM, Xiao X, Ma L, Lin XM (2012) Serum carotenoids in relation to risk factors for development of artherosclerosis. Clin Biochem 45:1357–1361

    CAS  PubMed  Google Scholar 

  206. Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823

    CAS  PubMed  Google Scholar 

  207. Ford ES, Will JC, Bowman BA, Venkat Narayan KM (1999) Diabetes mellitus and serum carotenoids: findings from the Third National Health and Nutrition Examination Survey. Am J Epidemiol 149:168–176

    CAS  PubMed  Google Scholar 

  208. Suzuki K, Ito Y, Nakamura S, Ochiai J, Aoki K (2002) Relationship between serum carotenoids and hyperglycemia: a population-based cross-sectional study. J Epidemiol 12(5):357–366

    PubMed  Google Scholar 

  209. Coyne T, Ibiebele TI, Baade PD, Dobson A, McClintock C, Dunn S, Leonard D, Shaw J (2005) Diabetes mellitus and serum carotenoids: findings of a population-based study in Queensland, Australia. Am J Clin Nutr 82:685–693

    CAS  PubMed  Google Scholar 

  210. Montonen J, Knekt P, Järvinen R, Reunanen A (2004) Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 27:362–366

    CAS  PubMed  Google Scholar 

  211. Liu S, Ajani U, Chae C, Hennekens C, Buring JE, Manson JE (1999) Long-term beta-carotene supplementation and risk of type 2 diabetes mellitus: a randomized controlled trial. JAMA 282:1073–1075

    CAS  PubMed  Google Scholar 

  212. Wang L, Liu S, Pradhan AD, Manson JE, Buring JE, Gaziano JM, Sesso HD (2006) Plasma lycopene, other carotenoids, and the risk of type 2 diabetes in women. Am J Epidemiol 164:576–585

    PubMed  Google Scholar 

  213. Mathews-Roth MM (1993) Carotenoids in erythropoietic protoporphyria and other photosensitivity diseases. Annals NY Acad Sci 691:127–138

    CAS  Google Scholar 

  214. Lietz G, Henry CJK, Mulokozi G, Mugyabuso JKL, Ballart A, Ndossi GD, Lorri W, Tomkins A (2001) Comparison of the effects of supplemental red palm oil and sunflower oil on maternal vitamin A status. Am J Clin Nutr 74:501–509

    CAS  PubMed  Google Scholar 

  215. Vuong LT, Dueker SR, Murphy SP (2002) Plasma β-carotene and retinol concentrations of children increase after a 30-d supplementation with the fruit Momordica cochinchinensis (gac). Am J Clin Nutr 75: 872–879

    CAS  Google Scholar 

  216. Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, Rautalahti M, Hartman AM, Palmgren J, Freedman LS, Haapakoski J, Barrett MJ, Pietinen P, Malila N, Tala E, Liippo K, Salomaa E-R, Tangrea JA, Teppo L, Askin FB, Taskinen E, Erozan Y, Greenwald P, Huttunen JK (1996) α-Tocopherol and β-carotene supplements and lung cancer incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: effects of baseline characteristics and study compliance. J Natl Cancer Inst 88:1560–1570

    CAS  PubMed  Google Scholar 

  217. Baron JA, Cole BF, Mott L, Haile R, Grau M, Church TR, Beck GJ, Greenberg ER (2003) Neoplastic and antineoplastic effects of β-carotene on colorectal adenoma recurrence: results of a randomized trial. J Natl Cancer Inst 95:717–722

    CAS  PubMed  Google Scholar 

  218. Goodman GE, Thornquist MD, Balmes J, Cullen MR, Meyskens FL, Omenn GS, Valanis B, Williams JH Jr (2004) The beta-carotene and retinol efficacy trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping β-carotene and retinol supplements. J Natl Cancer Inst 96:1743–1750

    CAS  PubMed  Google Scholar 

  219. Palozza P (1998) Prooxidant actions of carotenoids in biologic systems. Nutr Rev 56:257–256

    CAS  PubMed  Google Scholar 

  220. Reich P, Shwachman H, Craig JM (1960) Lycopenemia: a variant of carotenemia. New Eng J Med 262:263–269

    CAS  PubMed  Google Scholar 

  221. Goralczyk R, Buser S, Baush J, Bee W, Zühlke U, Barker FM (1997) Occurrence of birefringent retinal inclusions in cynomolgus monkeys after high doses of canthaxanthin. Invest Opthalmol Vis Sci 38:741–752

    CAS  Google Scholar 

  222. Russell RM (2004) The enigma of β-carotene in carcinogenesis: what can be learned from animal studies. J Nutr 134:262S–268S

    CAS  PubMed  Google Scholar 

  223. Back E, Frindt C, Nohr D, Frank J, Ziebach R, Stern M, Banke M, Biesalski H (2004) Antioxidant deficiency in cystic fibrosis: when is the right time to take action? Am J Clin Nutr 80:374–384

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis E. Bowen PhD, RD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bowen, P., Stacewicz-Sapuntzakis, M., Diwadkar-Navsariwala, V. (2015). Carotenoids in Human Nutrition. In: Chen, C. (eds) Pigments in Fruits and Vegetables. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2356-4_3

Download citation

Publish with us

Policies and ethics