Skip to main content

Emerging and Future Trends and Technologies for the Detection and Typing of Escherichia coli

  • Chapter
  • First Online:
Detection and Typing Strategies for Pathogenic Escherichia coli

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

  • 1162 Accesses

Abstract

Foodborne disease is a major public health concern and will remain so for many years ahead. Future trends in our food systems will see changes that will influence the emergence and reemergence of various pathogens. Surveillance will therefore become vital in observing changing levels of foodborne disease and managing foodborne outbreaks worldwide. As a result, methods to isolate, detect, and type bacterial pathogens will rapidly evolve in order to gain more knowledge of the epidemiology of these pathogens and to subsequently implement controls to prevent disease. The time-consuming nature of traditional culture methods to detect and isolate pathogens from foods has seen many advances in technologies with an aim to find faster, more sensitive and specific, and less labor-intensive assays. Currently, sample preparation remains a challenge where most methods require enrichment steps and significant periods of time for incubation. Real-time detection of pathogens is important to ensure a rapid diagnosis of the disease in patients and to ensure the rapid release of foods into commerce. The main goal for rapid methods is to increase sensitivities in order to avoid enrichments and to test the sample directly for the pathogen. Typing technologies are also being developed to exploit the full potential of the whole or “pangenome” of a pathogen and will potentially replace traditional culture and typing systems in diagnostic laboratories in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM, Brown EW, Detter C, Gerner-Smidt P, Gilmour MW, Harmsen D, Hendriksen RS, Hewson R, Heymann DL, Johansson K, Ijaz K, Keim PS, Koopmans M, Kroneman A, Lo Fo Wong D, Lund O, Palm D, Sawanpanyalert P, Sobel J, Schlundt J (2012) Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response. Emerg Infect Dis 18(11):e1. doi:10.3201/eid/1811.120453

    Article  Google Scholar 

  • Boxrud D (2010) Advances in subtyping methods of foodborne disease pathogens. Curr Opin Biotechnol 21(2):137–141. doi:10.1016/j.copbio.2010.02.011

    Article  CAS  Google Scholar 

  • Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A, Gutmann L, Nassif X (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44(1):104–109. doi:10.1016/j.clinbiochem.2010.06.017

    Article  CAS  Google Scholar 

  • Cebula T, Payne W, Feng P (1995) Simultaneous identification of strains of Escherichia coli serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J Clin Microbiol 33:248–250

    CAS  Google Scholar 

  • Chen GZ, Yin ZZ (2014) Electrochemical immunoassay of Escherichia coli O157:H7 using Ag@SiO2 nanoparticles as LABELS. J Anal Meth Chem 2014:247034. doi:10.1155/2014/247034

    Google Scholar 

  • Christner M, Trusch M, Rohde H, Kwiatkowski M, Schluter H, Wolters M, Aepfelbacher M, Hentschke M (2014) Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli. PLoS ONE 9(7):e101924. doi:10.1371/journal.pone.0101924

    Article  Google Scholar 

  • Cocolin L, Rajkovic A, Rantsiou K, Uyttendaele M (2011) The challenge of merging food safety diagnostic needs with quantitative PCR platforms. Trends Food Sci Tech 22(Supplement 1):S30–S38. doi:10.1016/j.tifs.2011.02.009

    Article  CAS  Google Scholar 

  • Du Z, Yang R, Guo Z, Song Y, Wang J (2002) Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 74(21):5487–5491

    Article  CAS  Google Scholar 

  • Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363(1–2):71–82. doi:10.1016/j.cccn.2005.06.023

    Article  CAS  Google Scholar 

  • Fournier-Wirth C, Coste J (2010) Nanotechnologies for pathogen detection: future alternatives? Biologicals 38(1):9–13. doi:10.1016/j.biologicals.2009.10.010

    Article  Google Scholar 

  • Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Muller L, King LA, Rosner B, Buchholz U, Stark K, Krause G, Team HUSI (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. New Engl J Med 365(19):1771–1780. doi:10.1056/NEJMoa1106483

    Article  CAS  Google Scholar 

  • Franz E, van Hoek AHAM, van der Wal FJ, de Boer A, Zwartkruis-Nahuis A, van der Zwaluw K, Aarts HJM, Heuvelink AE (2012) Genetic features differentiating bovine, food, and human isolates of Shiga toxin-producing Escherichia coli O157 in the Netherlands. J Clin Microbiol 50(3):772–780. doi:10.1128/Jcm.05964-11

    Article  CAS  Google Scholar 

  • Garaizar J, Rementeria A, Porwollik S (2006) DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? FEMS Immunol Med Microbiol 47(2):178–189. doi:10.1111/j.1574-695X.2006.00081.x

    Article  CAS  Google Scholar 

  • Ge B, Meng J (2009) Advanced technologies for pathogen and toxin detection in foods: current applications and future directions. J Lab Autom 14(4):235–241

    Article  Google Scholar 

  • Huang DB, Mohanty A, DuPont HL, Okhuysen PC, Chiang T (2006) A review of an emerging enteric pathogen: enteroaggregative Escherichia coli. J Med Microbiol 55(Pt 10):1303–1311. doi:10.1099/jmm.0.46674-0

    Article  CAS  Google Scholar 

  • Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510. doi:10.1128/JCM.03617-13

    Article  CAS  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451(7181):990–993. doi:10.1038/nature06536

    Article  CAS  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62(4–5):408–423. doi:10.1016/j.addr.2009.11.013

    Article  CAS  Google Scholar 

  • Karmali MA, Gannon V, Sargeant JM (2010) verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140(3–4):360–370. doi:10.1016/j.vetmic.2009.04.011

    Article  CAS  Google Scholar 

  • Kaspar C, Doyle ME, Archer J (2010) White paper on non-O157:H7 Shiga toxin-producing E. coli from mean and non-meat sources. http://fri.wisc.edu/docs/pdf/FRI_Brief_NonO157STEC_4_10.pdf. Accessed 30 Sept 2014

  • Koser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM, Farrington M, Holden MTG, Dougan G, Bentley SD, Parkhill J, Peacock SJ (2012) Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8(8):e1002824. doi:10.1371/journal.ppat.1002824 (doi:ARTN e1002824)

    Article  CAS  Google Scholar 

  • Ma S, Tang Y, Liu J, Wu J (2014) Visible paper chip immunoassay for rapid determination of bacteria in water distribution system. Talanta 120:135–140. doi:10.1016/j.talanta.2013.12.007

    Article  CAS  Google Scholar 

  • Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PloS One 6(7):e22751. doi:10.1371/journal.pone.0022751

    Article  CAS  Google Scholar 

  • Najafi R, Mukherjee S, Hudson J Jr, Sharma A, Banerjee P (2014) Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int J Food Microbiol 189c:89–97. doi:10.1016/j.ijfoodmicro.2014.07.036

    Article  Google Scholar 

  • Newell D, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H (2010) Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:139S3–S15

    Article  Google Scholar 

  • Pavlovic M, Huber I, Konrad R, Busch U (2013) Application of MALDI-TOF MS for the identification of foodborne bacteria. Open Microbiol J 7:135–141.

    Article  Google Scholar 

  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK (2011) Origins of the Escherichia coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. New Engl J Med 365(8):709–717Rasooly A, Herold KE (2008) Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis 5(4):531–550. doi:10.1089/fpd.2008.0119

    Article  CAS  Google Scholar 

  • Schubert S, Weinert K, Wagner C, Gunzl B, Wieser A, Maier T, Kostrzewa M (2011) Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J Mol Diagn 13(6):701–706. doi:10.1016/j.jmoldx.2011.07.004

    Article  CAS  Google Scholar 

  • Schurch AC, Siezen RJ (2010) Genomic tracing of epidemics and disease outbreaks. Microb Biotechnol 3(6):628–633. doi:10.1111/j.1751-7915.2010.00224.x

    Article  Google Scholar 

  • Sharma P, Kumari H, Kumar M, Verma M, Kumari K, Malhotra S, Khurana J, Lal R (2008) From bacterial genomics to metagenomics: concept, tools and recent advances. Indian J Microbiol 48(2):173–194. doi:10.1007/s12088-008-0031-4

    Article  CAS  Google Scholar 

  • Struelens MJ, Brisse S (2013) From molecular to genomic epidemiology: transforming surveillance and control of infectious diseases. Euro Surveill 18(4):20386

    CAS  Google Scholar 

  • Tang Y, Kim H, Singh AK, Aroonnual A, Bae E, Rajwa B, Fratamico PM, Bhunia AK (2014) Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157. PLoS ONE 9(8):e105272. doi:10.1371/journal.pone.0105272

    Article  Google Scholar 

  • Thomas MK, Murray R, Flockhart L, Pintar K, Pollari F, Fazil A, Nesbitt A, Marshall B (2013) Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathog Dis 10(7):639–648. doi:10.1089/fpd.2012.1389

    Article  Google Scholar 

  • Tokarskyy O, Marshall DL (2008) Immunosensors for rapid detection of Escherichia coli O157:H7—perspectives for use in the meat processing industry. Food Microbiol 25(1):1–12. doi:10.1016/j.fm.2007.07.005

    Article  CAS  Google Scholar 

  • Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84(1):1–12. doi:http://dx.doi.org/10.1016/S1537-5110(02)00236-2

  • Wain J, Mavrogiorgou E (2013) Next-generation sequencing in clinical microbiology. Expert Rev Mol Diagn 13(3):225–227. doi:10.1586/erm.13.8

    Article  CAS  Google Scholar 

  • Wang L, Wu CS, Fan X, Mustapha A (2012) Detection of Escherichia coli O157:H7 and Salmonella in ground beef by a bead-free quantum dot-facilitated isolation method. Int J Food Microbiol 156(1):83–87. doi:10.1016/j.ijfoodmicro.2012.03.003

    Article  CAS  Google Scholar 

  • Zhang W, Qi W, Albert TJ, Motiwala AS, Alland D, Hyytia-Trees EK, Ribot EM, Fields PI, Whittam TS, Swaminathan B (2006) Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res 16(6):757–767. doi:10.1101/gr.4759706

    Article  CAS  Google Scholar 

  • Zhu H, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137(11):2541–2544. doi:10.1039/c2an35071h

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Rivas .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Authors

About this chapter

Cite this chapter

Rivas, L., Mellor, G., Gobius, K., Fegan, N. (2015). Emerging and Future Trends and Technologies for the Detection and Typing of Escherichia coli . In: Detection and Typing Strategies for Pathogenic Escherichia coli. SpringerBriefs in Food, Health, and Nutrition. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2346-5_4

Download citation

Publish with us

Policies and ethics