Skip to main content

Isotopes and Procedural Imaging

  • Chapter
  • First Online:
Imaging and Visualization in The Modern Operating Room

Abstract

In today’s evermore advancing healthcare system, surgical interventions trend towards minimally invasive and highly precise procedures. Many of these procedures are assisted by intraoperative imaging tools, which have been rapidly developing and are one of the factors facilitating this advancement. The use of imaging agents in the operating room makes the mapping of vessels and lymph nodes possible, and with it the detection of malignant or otherwise diseased lesions of interest in real time. Radioactive isotopes took the leading role early on as a readout for intraoperative probes, while other imaging modalities such as optical imaging have recently emerged. In this chapter, we will discuss the evolution of radioactive isotopes in intraoperative imaging, its current clinical applications, as well as their potential future in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Povoski SP, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:11.

    Google Scholar 

  2. Selverstone B, Sweet WH, Robinson CV. The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann Surg. 1949;130(4):643–51.

    Google Scholar 

  3. Harris CC, Bigelow RR, Francis JE, Kelly GG, Bell PR. A Csi(Ti)-crystal surgical scintillation probe. Nucleonics. 1956;14:102–8.

    Google Scholar 

  4. Sickle-Santanello BJ, et al. Radioimmunoguided surgery using the monoclonal antibody B72.3 in colorectal tumors. Dis Colon Rectum. 1987;30(10):761–4.

    Google Scholar 

  5. Aitken DR, et al. A gamma-detecting probe for radioimmune detection of CEA-producing tumors. Successful experimental use and clinical case report. Dis Colon Rectum. 1984;27(5):279–82.

    Google Scholar 

  6. Adams S, Baum RP. Intraoperative use of gamma-detecting probes to localize neuroendocrine tumors. Q J Nucl Med. 2000;44(1):59–67.

    Google Scholar 

  7. Adams S, et al. Radioisotope-guided surgery in patients with pheochromocytoma and recurrent medullary thyroid carcinoma: a comparison of preoperative and intraoperative tumor localization with histopathologic findings. Cancer. 2001;92(2):263–70.

    Google Scholar 

  8. Postma EL, et al. Efficacy of radioguided occult lesion localisation (ROLL) versus wire-guided localisation (WGL) in breast conserving surgery for non-palpable breast cancer: a randomised controlled multicentre trial. Breast Cancer Res Treat. 2012;136(2):469–78.

    Google Scholar 

  9. Morton DL, et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N Engl J Med. 2014;370(7):599–609.

    Google Scholar 

  10. de Boer M, et al. Micrometastases or isolated tumor cells and the outcome of breast cancer. N Engl J Med. 2009;361(7):653–63.

    Google Scholar 

  11. Gipponi M, et al. Sentinel lymph node as a new marker for therapeutic planning in breast cancer patients. J Surg Oncol. 2004;85(3):102–11.

    Google Scholar 

  12. Dezarn WA. Quality assurance issues for therapeutic application of radioactive microspheres. Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S147–51.

    Google Scholar 

  13. Ayala S, et al. Radioguided surgery in Meckel’s diverticulum. Rev Esp Med Nucl Imagen Mol. 2014;33(4):231–3.

    Google Scholar 

  14. Dickfeld T, Kocher C. The role of integrated PET-CT scar maps for guiding ventricular tachycardia ablations. Curr Cardiol Rep. 2008;10(2):149–57.

    Google Scholar 

  15. Klein T, et al. The potential role of iodine-123 metaiodobenzylguanidine imaging for identifying sustained ventricular tachycardia in patients with cardiomyopathy. Curr Cardiol Rep. 2013;15(5):359.

    Google Scholar 

  16. Lam MG, et al. Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J Nucl Med. 2013;54(12):2055–61.

    Google Scholar 

  17. Gates VL, Salem R, Lewandowski RJ. Positron emission tomography/CT after yttrium-90 radioembolization: current and future applications. J Vasc Interv Radiol. 2013;24(8):1153–5.

    Google Scholar 

  18. Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41(3):166–81.

    Google Scholar 

  19. Evaluated Nuclear Reaction Database. NEA Data Bank Nuclear Data Services. 2014. http://www.oecd-nea.org/janisweb/search/endf.

  20. Breitz HB, et al. Clinical experience with Tc-99m nofetumomab merpentan (verluma) radioimmunoscintigraphy. Clin Nucl Med. 1997;22(9):615–20.

    Google Scholar 

  21. Lechner P, et al. Probe-guided surgery for colorectal cancer. Recent Results Cancer Res. 2000;157:273–80.

    Google Scholar 

  22. Hladik P, et al. Immunoscintigraphy and intra-operative radioimmunodetection in the treatment of colorectal carcinoma. Colorectal Dis. 2001;3(6):380–6.

    Google Scholar 

  23. Yun M. Imaging of gastric cancer metabolism using 18F-FDG PET/CT. J Gastric Cancer. 2014;14(1):1–6.

    Google Scholar 

  24. Jakub JW, et al. Current status of radioactive seed for localization of non palpable breast lesions. Am J Surg. 2010;199(4):522–8.

    Google Scholar 

  25. Sergides IG, Austin RC, Winslet MC. Radioimmunodetection: technical problems and methods of improvement. Eur J Surg Oncol. 1999;25(5):529–39.

    Google Scholar 

  26. Hinkle GH, Laven DL. Radionucleotides. In: Martin EW, editor. Radioimmunoguided surgery (RIGS) in the detection and treatment of colorectal cancer. Austin: Landes Company; 1994. pp. 29–39.

    Google Scholar 

  27. Daghighian F, et al. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21(1):153–7.

    Google Scholar 

  28. Hoffman E, Tornai M, Janecek M, Patt B, Iwanczyk J. Intraoperative probes and imaging probes. In: Aarsvold J, Wernick M, editor. Emission tomography: the fundamentals of PET and SPECT. California: Academic; 2004. p. 336.

    Google Scholar 

  29. Reinhardt H, Stula D, Gratzl O. Topographic studies with 32P tumor marker during operations of brain tumors. Eur Surg Res. 1985;17(6):333–40.

    Google Scholar 

  30. Braghirolli AM, et al. Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot. 2014;90:138–48.

    Google Scholar 

  31. Piert M, Carey J, Clinthorne N. Probe-guided localization of cancer deposits using [18F]fluorodeoxyglucose. Q J Nucl Med Mol Imag. 2008;52(1):37–49.

    Google Scholar 

  32. Singh B, et al. A hand-held beta imaging probe for FDG. Ann Nucl Med. 2013;27(3):203–8.

    Google Scholar 

  33. Gonzalez SJ, et al. An analysis of the utility of handheld PET probes for the intraoperative localization of malignant tissue. J Gastrointest Surg. 2011;15(2):358–66.

    Google Scholar 

  34. Camillocci ES, et al. A novel radioguided surgery technique exploiting beta(−) decays. Sci Rep. 2014;4:4401.

    Google Scholar 

  35. Norman J. Recent trends becoming standard of care yielding smaller, more successful operations at a lower cost. Otolaryngol Clin North Am. 2004;37(4):683–8, vii.

    Google Scholar 

  36. Vigili MG, et al. Lymphoscintigraphy and radioguided sentinel node biopsy in oral cavity squamous cell carcinoma: same day protocol. Eur Arch Otorhinolaryngol. 2007;264(2):163–7.

    Google Scholar 

  37. Sideri M, et al. Detection of sentinel nodes by lymphoscintigraphy and gamma probe guided surgery in vulvar neoplasia. Tumori. 2000;86(4):359–63.

    Google Scholar 

  38. Barranger E, et al. Laparoscopic sentinel lymph node procedure using a combination of patent blue and radioisotope in women with cervical carcinoma. Cancer. 2003;97(12):3003–9.

    Google Scholar 

  39. Morton DL, et al. Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: a multicenter trial. Multicenter selective lymphadenectomy trial group. Ann Surg. 1999;230(4):453–63. Discussion 463–5.

    Google Scholar 

  40. Norman J, Chheda H. Minimally invasive parathyroidectomy facilitated by intraoperative nuclear mapping. Surgery. 1997;122(6):998–1003. Discussion 1003–4.

    Google Scholar 

  41. Leborgne FE, et al. Study of the lymphatic systems of the mammary gland with radiogold 198. Bol Soc Cir Urug. 1956;27(1):109–29.

    Google Scholar 

  42. Obenaus E, et al. Radiopharmaceuticals for radioguided surgery. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery: a comprehensive team approach. New York: Springer; 2008. pp. 3–11.

    Google Scholar 

  43. Kitagawa Y, et al. Laparoscopic detection of sentinel lymph nodes in gastrointestinal cancer: a novel and minimally invasive approach. Ann Surg Oncol. 2001;8(9 Suppl):86S–9S.

    Google Scholar 

  44. Guelfucci B, et al. Papillary thyroid and squamous cell carcinoma in the same radioguided sentinel lymph node. Clin Nucl Med. 2004;29(4):268–9.

    Google Scholar 

  45. Raspagliesi F, et al. Hysteroscopic injection of tracers in sentinel node detection of endometrial cancer: a feasibility study. Am J Obstet Gynecol. 2004;191(2):435–9.

    Google Scholar 

  46. Hadway P, et al. Evaluation of dynamic lymphoscintigraphy and sentinel lymph-node biopsy for detecting occult metastases in patients with penile squamous cell carcinoma. BJU Int. 2007;100(3):561–5.

    Google Scholar 

  47. Beri A, Janetschek G. Technology insight: radioguided sentinel lymph node dissection in the staging of prostate cancer. Nat Clin Pract Urol. 2006;3(11):602–10.

    Google Scholar 

  48. Nwogu C, et al. Radioguided detection of lymph node metastasis in non-small cell lung cancer. Ann Thorac Surg. 2006;82(5):1815–20. Discussion 1820.

    Google Scholar 

  49. Bitencourt AG, et al. New applications of radioguided surgery in oncology. Clinics (Sao Paulo). 2009;64(5):397–402.

    Google Scholar 

  50. Martin EW Jr, et al. Radioimmunoguided surgery: intraoperative use of monoclonal antibody 17-1A in colorectal cancer. Hybridoma. 1986;5(Suppl 1):S97–108.

    Google Scholar 

  51. Bertoglio S, et al. Role of tumor-associated antigen expression in radioimmunoguided surgery for colorectal and breast cancer. Semin Surg Oncol. 1998;15(4):249–53.

    Google Scholar 

  52. Lucisano E, Bertoglio S. Role of radioimmunoguided surgery using iodine-125-labeled B72.3 monoclonal antibody in gastric cancer surgery. Semin Surg Oncol. 1998;15(4):212–4.

    Google Scholar 

  53. LaValle GJ, et al. Assessment of disseminated pancreatic cancer: a comparison of traditional exploratory laparotomy and radioimmunoguided surgery. Surgery. 1997;122(5):867–71. Discussion 871–3.

    Google Scholar 

  54. Bell J, et al. Intraoperative radioimmunodetection of ovarian cancer using monoclonal antibody B72.3 and a portable gamma-detecting probe. Obstet Gynecol. 1990;76(4):607–11.

    Google Scholar 

  55. Anderson RS, et al. Radioimmunoguided surgery using indium-111 capromab pendetide (PROSTASCINT) to diagnose supraclavicular metastasis from prostate cancer. Urology. 2000;56(4):669.

    Google Scholar 

  56. Avital S, et al. Localization of monoclonal antibody CC49 in colonic metastasis from renal cell carcinoma. Eur J Surg Oncol. 1998;24(2):149–51.

    Google Scholar 

  57. Grazia M, et al. Radioimmunoguided surgery and intraoperative lung cancer staging. Semin Surg Oncol. 1998;15(4):215–9.

    Google Scholar 

  58. Medina-Franco H, et al. Radioguided occult lesion localization (ROLL) versus wire-guided lumpectomy for non-palpable breast lesions: a randomized prospective evaluation. J Surg Oncol. 2008;97(2):108–11.

    Google Scholar 

  59. Lovrics PJ, et al. Systematic review of radioguided surgery for non-palpable breast cancer. Eur J Surg Oncol. 2011;37(5):388–97.

    Google Scholar 

  60. Chella A, et al. A pilot study of the role of TC-99 radionuclide in localization of pulmonary nodular lesions for thoracoscopic resection. Eur J Cardiothorac Surg. 2000;18(1):17–21.

    Google Scholar 

  61. Zaman M, et al. In patients undergoing video-assisted thoracoscopic surgery excision, what is the best way to locate a subcentimetre solitary pulmonary nodule in order to achieve successful excision? Interact Cardiovasc Thorac Surg. 2012;15(2):266–72.

    Google Scholar 

  62. Mari Hualde A, et al. Utility of radioguided surgery in splenosis. Rev Esp Med Nucl Imagen Mol. 2014;33(3):180–2.

    Google Scholar 

  63. Robertson R, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54(16):N355–65.

    Google Scholar 

  64. Thorek D, et al. Cerenkov imaging—a new modality for molecular imaging. Am J Nucl Med Mol Imaging. 2012;2(2):163–73.

    Google Scholar 

  65. Holland JP, et al. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging. 2011;10(3):177–86, 1–3.

    Google Scholar 

  66. Liu H, et al. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med. 2012;53(10):1579–84.

    Google Scholar 

  67. Thorek DL, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of (18)F-FDG. J Nucl Med. 2014;55(1):95–8.

    Google Scholar 

  68. Bradbury MS, et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 2013;5(1):74–86.

    Google Scholar 

  69. Krag DN, et al. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol. 1993;2(6):335–9. Discussion 340.

    Google Scholar 

  70. Harcke HT. Bone scintigraphy in children: benign tumors. Ann Radiol (Paris). 1983;26(8):670–4.

    Google Scholar 

  71. Ghelman B, Thompson FM, Arnold WD. Intraoperative radioactive localization of an osteoid-osteoma. Case report. J Bone Joint Surg Am. 1981;63(5):826–7.

    Google Scholar 

  72. Harvey WC, Lancaster JL. Technical and clinical characteristics of a surgical biopsy probe. J Nucl Med. 1981;22(2):184–6.

    Google Scholar 

  73. Alex JC, et al. Gamma-probe-guided lymph node localization in malignant melanoma. Surg Oncol. 1993;2(5):303–8.

    Google Scholar 

  74. Barros A, et al. Radioguided localisation of non-palpable breast lesions and simultaneous sentinel lymph node mapping. Eur J Nucl Med Mol Imaging. 2002;29(12):1561–5.

    Google Scholar 

  75. Strong VE, et al. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc. 2008;22(2):386–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Lewis PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Y., Reiner, T., Lewis, J. (2015). Isotopes and Procedural Imaging. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics