Skip to main content

PET-Guided Interventions from Diagnosis to Treatment

  • Chapter
  • First Online:
Imaging and Visualization in The Modern Operating Room

Abstract

Positron emission tomography (PET) has revolutionized the management of cancer patients from diagnosis to treatment. Since the Centers for Medicare and Medicaid (CMS) first approved PET coverage for initial staging of lung cancer in 1998, PET imaging has expanded to cover a wide variety of tumor types for both staging and monitoring treatment response. The role of PET imaging has continued to grow and has found itself inside of operating rooms and interventional suites. PET guidance has increased accuracy of biopsy sampling and improved assessment of margins following surgical and ablative therapies. The focus of this chapter is on the role of PET imaging in the diagnosis, treatment, and post-op monitoring of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354(5):496–507.

    Article  CAS  PubMed  Google Scholar 

  2. Rigo P, Paulus P, Kaschten BJ, Hustinx R, Bury T, Jerusalem G, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med Mol Imaging. 1996;23(12):1641–74.

    Article  CAS  Google Scholar 

  3. Kong G, Jackson C, Koh DM, Lewington V, Sharma B, Brown G, et al. The use of 18F-FDG PET/CT in colorectal liver metastases—comparison with CT and liver MRI. Eur J Nucl Med Mol Imaging. 2008;35(7):1323–9.

    Article  CAS  PubMed  Google Scholar 

  4. Perry C, Herishanu Y, Metzer U, Bairey O, Ruchlemer R, Trejo L, et al. Diagnostic accuracy of PET/CT in patients with extranodal marginal zone MALT lymphoma. Eur J Haematol. 2007;79(3):205–9.

    Article  PubMed  Google Scholar 

  5. Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Ballek E, Fleckenstein J, et al. Nonrigid versus rigid registration of thoracic 18F-FDG PET and CT in patients with lung cancer: an intraindividual comparison of different breathing maneuvers. J Nucl Med. 2009;50(12):1921–6.

    Article  PubMed  Google Scholar 

  6. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    CAS  PubMed  Google Scholar 

  7. Lardinois D, Weder W, Roudas M, von Schulthess GK, Tutic M, Moch H, et al. Etiology of solitary extrapulmonary positron emission tomography and computed tomography findings in patients with lung cancer. J Clin Oncol. 2005;23(28):6846–53.

    Article  PubMed  Google Scholar 

  8. Metser U, Even-Sapir E. Increased (18)F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT. Semin Nucl Med. 2007;37(3):206–22.

    Article  PubMed  Google Scholar 

  9. Cerci JJ, Pereira Neto CC, Krauzer C, Sakamoto DG, Vitola JV. The impact of coaxial core biopsy guided by FDG PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2013;40(1):98–103.

    Article  PubMed  Google Scholar 

  10. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med. 1993;34(5):773–9.

    CAS  PubMed  Google Scholar 

  11. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Active and passive mechanisms of [fluorine-18] fluorodeoxyglucose uptake by proliferating and prenecrotic cancer cells in vivo: a microautoradiographic study. J Nucl Med. 1994;35(6):1067–75.

    CAS  PubMed  Google Scholar 

  12. Minn H, Clavo AC, Grenman R, Wahl RL. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med. 1995;36(2):252–8.

    CAS  PubMed  Google Scholar 

  13. Minn H, Joensuu H, Ahonen A, Klemi P. Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors. Cancer. 1988;61(9):1776–81.

    Article  CAS  PubMed  Google Scholar 

  14. Slosman DO, Pittet N, Donath A, Polla BS. Fluorodeoxyglucose cell incorporation as an index of cell proliferation: evaluation of accuracy in cell culture. Eur J Nucl Med. 1993;20(11):1084–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shyn PB, Tatli S, Sainani NI, Morrison PR, Habbab F, Catalano P, et al. Minimizing image misregistration during PET/CT–guided percutaneous interventions with monitored breath-hold PET and CT acquisitions. J Vasc Interv Radiol. 2011;22(9):1287–92.

    Article  PubMed  Google Scholar 

  16. Schoellnast H, Larson SM, Nehmeh SA, Carrasquillo JA, Thornton RH, Solomon SB. Radiofrequency ablation of non-small-cell carcinoma of the lung under real-time FDG PET CT guidance. Cardiovasc Intervent Radiol. 2011;34(Suppl. 2):S182–5.

    Google Scholar 

  17. Sainani NI, Shyn PB, Tatli S, Morrison PR, Tuncali K, Silverman SG. PET/CT-guided radiofrequency and cryoablation: is tumor fluorine-18 fluorodeoxyglucose activity dissipated by thermal ablation? J Vasc Interv Radiol. 2011;22(3):354–60.

    Article  PubMed  Google Scholar 

  18. Ryan ER, Sofocleous CT, Schöder H, Carrasquillo JA, Nehmeh S, Larson SM, et al. Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. 2013;268(1):288–95.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Shyn PB, Tatli S, Sainani NI, Morrison PR, Habbab F, Catalano P, et al. Minimizing image misregistration during PET/CT-guided percutaneous interventions with monitored breath-hold PET and CT acquisitions. J Vasc Interv Radiol. 2011;22(9):1287–92.

    Article  PubMed  Google Scholar 

  20. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  21. Sainani NI, Shyn PB, Tatli S, Morrison PR, Tuncali K, Silverman SG. PET/CT-guided radiofrequency and cryoablation: is tumor fluorine-18 fluorodeoxyglucose activity dissipated by thermal ablation? J Vasc Interv Radiol. 2011;22(3):354–60.

    Article  PubMed  Google Scholar 

  22. Ryan ER, Sofocleous CT, Schoder H, Carrasquillo JA, Nehmeh S, Larson SM, et al. Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. 2013;268(1):288–95.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wang X, Sofocleous CT, Erinjeri JP, Petre EN, Gonen M, Do KG, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol. 2013;36(1):166–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sofocleous CT, Nascimento RG, Petrovic LM, Klimstra DS, Gonen M, Brown KT, et al. Histopathologic and immunohistochemical features of tissue adherent to multitined electrodes after RF ablation of liver malignancies can help predict local tumor progression: initial results. Radiology. 2008;249(1):364–74.

    Article  PubMed  Google Scholar 

  25. Sofocleous CT, Garg S, Petrovic LM, Gonen M, Petre EN, Klimstra DS, et al. Ki-67 is a prognostic biomarker of survival after radiofrequency ablation of liver malignancies. Ann Surg Oncol. 2012;19(13):4262–9.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Weight CJ, Kaouk JH, Hegarty NJ, Remer EM, O’Malley CM, Lane BR, et al. Correlation of radiographic imaging and histopathology following cryoablation and radio frequency ablation for renal tumors. J Urol. 2008;179(4):1277–81. Discussion 81–3.

    Article  PubMed  Google Scholar 

  27. Gulec SA. PET probe-guided surgery. J Surg Oncol. 2007;96(4):353–7.

    Article  PubMed  Google Scholar 

  28. González SJ, González L, Wong J, Brader P, Zakowski M, Gönen M, et al. An analysis of the utility of handheld PET probes for the intraoperative localization of malignant tissue. J Gastrointest Surg. 2011;15(2):358–66.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Gulec SA, Daghighian F, Essner R. PET-probe: evaluation of technical performance and clinical utility of a handheld high-energy gamma probe in oncologic surgery. Ann Surg Oncol. 2006;13:525–9.

    Google Scholar 

  30. Andersen PA, Chakera AH, Klausen TL, Binderup T, Grossjohann HS, Friis E, et al. Radiation exposure to surgical staff during F-18-FDG-guided cancer surgery. Eur J Nucl Med Mol Imaging. 2008;35(3):624–9.

    Article  CAS  PubMed  Google Scholar 

  31. Povoski SP, Sarikaya I, White WC, Marsh SG, Hall NC, Hinkle GH, et al. Comprehensive evaluation of occupational radiation exposure to intraoperative and perioperative personnel from 18F-FDG radioguided surgical procedures. Eur J Nucl Med Mol Imaging. 2008;35(11):2026–34.

    Article  CAS  PubMed  Google Scholar 

  32. Ryan ER, Thornton R, Sofocleous CT, Erinjeri JP, Hsu M, Quinn B, et al. PET/CT-guided interventions: personnel radiation dose. Cardiovasc Intervent Radiol. 2013;36(4):1063–7.

    Article  PubMed  Google Scholar 

  33. Ahmed S, Zimmer A, McDonald N, Spies S. The effectiveness of lead aprons in reducing radiation exposures from specific radionuclides. J Nucl Med. 2007;48(MeetingAbstracts_2):470P.

    Google Scholar 

  34. Moran JK, Lee HB, Blaufox MD. Optimization of urinary FDG excretion during PET imaging. J Nucl Med. 1999;40(8):1352–7.

    CAS  PubMed  Google Scholar 

  35. Langenhoff BS, Oyen WJ, Jager GJ, Strijk SP, Wobbes T, Corstens FH, et al. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol. 2002;20(22):4453–8.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med. 2003;28(3):192–7.

    PubMed  Google Scholar 

  37. Singnurkar A, Solomon SB, Gonen M, Larson SM, Schoder H. 18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions. J Nucl Med. 2010;51(12):1833–40.

    Article  PubMed  Google Scholar 

  38. Nielsen K, van Tilborg AA, Scheffer HJ, Meijerink MR, de Lange-de Klerk ES, Meijer S, et al. PET-CT after radiofrequency ablation of colorectal liver metastases: suggestions for timing and image interpretation. Eur J Radiol. 2013;82(12):2169–75.

    Google Scholar 

  39. Huang S, Yu J, Liang P, Yu X, Cheng Z, Han Z, et al. Percutaneous microwave ablation for hepatocellular carcinoma adjacent to large vessels: a long-term follow-up. Eur J Radiol. 2014;83(3):552–8.

    Article  PubMed  Google Scholar 

  40. Groeschl RT, Pilgrim CHC, Hanna EM, Simo KA, Swan RZ, Sindram D, et al. Microwave ablation for hepatic malignancies: a multiinstitutional analysis. Ann Surg. 2013;259(6):1195–200.

    Article  Google Scholar 

  41. Little MW, Chung D, Boardman P, Gleeson FV, Anderson EM. Microwave ablation of pulmonary malignancies using a novel high-energy antenna system. CardioVasc Intervent Radiol. 2013;36(2):460–5.

    Article  PubMed  Google Scholar 

  42. Bonichon F, Palussiere J, Godbert Y, Pulido M, Descat E, Devillers A, et al. Diagnostic accuracy of 18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases: a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2013;40(12):1817–27.

    Article  CAS  PubMed  Google Scholar 

  43. Yoo DC, Dupuy DE, Hillman SL, Fernando HC, Rilling WS, Shepard JA, et al. Radiofrequency ablation of medically inoperable stage IA non-small cell lung cancer: are early posttreatment PET findings predictive of treatment outcome? AJR Am J Roentgenol. 2011;197(2):334–40.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Chen W, Zhuang H, Cheng G, Torigian DA, Alavi A. Comparison of FDG-PET, MRI and CT for post radiofrequency ablation evaluation of hepatic tumors. Ann Nucl Med. 2013;27(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  45. Sahin DA, Agcaoglu O, Chretien C, Siperstein A, Berber E. The utility of PET/CT in the management of patients with colorectal liver metastases undergoing laparascopic radiofrequency thermal ablation. Ann Surg Oncol. 2012;19(3):850–5.

    Article  PubMed  Google Scholar 

  46. Kuehl H, Antoch G, Stergar H, Veit-Haibach P, Rosenbaum-Krumme S, Vogt F, et al. Comparison of FDG-PET, PET/CT and MRI for follow-up of colorectal liver metastases treated with radiofrequency ablation: initial results. Eur J Radiol. 2008;67(2):362–71.

    Article  PubMed  Google Scholar 

  47. Denecke T, Steffen I, Hildebrandt B, Ruhl R, Streitparth F, Lehmkuhl L, et al. Assessment of local control after laser-induced thermotherapy of liver metastases from colorectal cancer: contribution of FDG-PET in patients with clinical suspicion of progressive disease. Acta Radiol (Stockholm, Sweden: 1987). 2007;48(8):821–30.

    Article  CAS  PubMed  Google Scholar 

  48. Veit P, Antoch G, Stergar H, Bockisch A, Forsting M, Kuehl H. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol. 2006;16(1):80–7.

    Article  PubMed  Google Scholar 

  49. Joosten J, Jager G, Oyen W, Wobbes T, Ruers T. Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol. 2005;31(10):1152–9.

    Article  CAS  PubMed  Google Scholar 

  50. Donckier V, Van Laethem JL, Goldman S, Van Gansbeke D, Feron P, Ickx B, et al. [F-18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol. 2003;84(4):215–23.

    Article  PubMed  Google Scholar 

  51. Emad-Eldin S, Abdelaziz O, Harth M, Hussein M, Nour-Eldin NE, Vogl TJ. The clinical utility of FDG-PET/CT in follow up and restaging of breast cancer patients. Egypt J Radiol Nucl Med. 2013;44(4):937–43.

    Article  Google Scholar 

  52. Kurata A, Murata Y, Kubota K, Osanai T, Shibuya H. Multiple 18F-FDG, PET-CT for postoperative monitoring of breast cancer patients. Acta Radiol. 2009;50(9):979–83.

    Article  CAS  PubMed  Google Scholar 

  53. Leal AL, Etchebehere M, Santos AO, Kalaf G, Pacheco EB, Amstalden EM, et al. Evaluation of soft-tissue lesions with 18F-FDG PET/CT: initial results of a prospective trial. Nucl Med Commun. 2014;35(3):252–9.

    Article  PubMed  Google Scholar 

  54. Hoshi M, Oebisu N, Takada J, Ieguchi M, Wakasa K, Nakamura H. Role of FDG-PET/CT for monitoring soft tissue tumors. Oncol Lett. 2014;7(4):1243–8.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Solomon MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silk, M., Cornelis, F., Solomon, S. (2015). PET-Guided Interventions from Diagnosis to Treatment. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics