New Generation Radiosurgery and Intraoperative Guidance

Chapter

Abstract

The evolution of intraoperative guidance, focusing on gamma and beta rays and their use in radio-guided surgery is comprehensively discussed in this chapter. The clinical utility of alpha, beta, and gamma rays is presented, as well as the pertinent components of an intraoperative probe for proper localization of radiosensitive areas. Commonly used radioisotopes for beta and gamma probe detection, along with their advantages and limitations, are also discussed. Clinical applications of the 18F atom are described, as the use of 18F-fluorodeoxyglucose (18F FDG) has increased significantly in the last several years. New technologies are discussed, including surgical visualization with the use of 3D image reconstruction, position tracking, as well as augmented and virtual reality technologies. These show a great promise of rapidly expanding this surgical field for the use and benefit of the next generation of surgeons and their patients.

Keywords

Intraoperative guidance Gamma Beta and PET probes Augmented and virtual reality Intraoperative visualization 

References

  1. 1.
    Harris CC, Bigelow RR, Francis JE, Kelly GG, Bell P. A Csi(Ti)-crystal surgical scintillation probe. Nucleonics. 1956;14:102–8.Google Scholar
  2. 2.
    Imaging I. Beta Probes http://www.gammaprobe.com: Intramedical Imaging; 2013 [cited 2013]. http://www.gammaprobe.com/products/beta-probes/.
  3. 3.
    Raylman RR, Wahl RL. A fiber-optically coupled positron-sensitive surgical probe. J Nucl Med. 1994;35(5):909–13.PubMedGoogle Scholar
  4. 4.
    Strong VE, Galanis CJ, Riedl CC, Longo VA, Daghighian F, Humm JL, et al. Portable PET probes are a novel tool for intraoperative localization of tumor deposits. Ann Surg Innov Res. 2009;3:2.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Janicki C, Seuntjens J. Re-evaluation of the dose to the cyst wall in P-32 radiocolloid treatments of cystic brain tumors using the dose-point-kernel and Monte Carlo methods. Med Phys. 2003;30(9):2475–81.CrossRefPubMedGoogle Scholar
  6. 6.
    González SJ, Wong J, González L, Brader P, Zakowski M, Gönen M, et al. Novel handheld PET probes provide intraoperative localization of PET-avid lymph nodes. Surg Endosc. 2011;25(10):3214–21.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Garcia-Parra R, Clinthorne N, Wang L, Picchio M, Piert M. Performance of beta- and high-energy gamma probes for the detection of cancer tissue in experimental surgical resection beds. Ann Nucl Med. 2011;25(7):486–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Tsuchimochi M, Sakahara H, Hayama K, Funaki M, Ohno R, Shirahata T, et al. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications. Eur J Nucl Med Mol Imaging. 2003;30(12):1605–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Daghighian F, Mazziotta JC, Hoffman EJ, Shenderov P, Eshaghian B, Siegel S, et al. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21(1):153–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Yamamoto S, Matsumoto K, Sakamoto S, Tarutani K, Minato K, Senda M. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19(1):23–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Gillies RJ, Gatenby RA. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr. 2007;39(3):251–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Buck AK, Reske SN. Cellular origin and molecular mechanisms of 18F-FDG uptake: is there a contribution of the endothelium? J Nucl Med. 2004;45(3):461–3.PubMedGoogle Scholar
  14. 14.
    Gulec SA. PET probe-guided surgery. J Surg Oncol. 2007;96(4):353–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Sun D, Bloomston M, Hinkle G, Al-Saif OH, Hall NC, Povoski SP, et al. Radioimmunoguided surgery (RIGS), PET/CT image-guided surgery, and fluorescence image-guided surgery: past, present, and future. J Surg Oncol. 2007;96(4):297–308.CrossRefPubMedGoogle Scholar
  16. 16.
    González SJ, González L, Wong J, Brader P, Zakowski M, Gönen M, et al. An analysis of the utility of handheld PET probes for the intraoperative localization of malignant tissue. J Gastrointest Surg. 2011;15(2):358–66.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Strong VE, Humm J, Russo P, Jungbluth A, Wong WD, Daghighian F, et al. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc. 2008;22(2):386–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Woolfenden JM, Barber HB. Radiation detector probes for tumor localization using tumor-seeking radioactive tracers. AJR Am J Roentgenol. 1989;153(1):35–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Bogalhas F, Charon Y, Duval MA, Lefebvre F, Palfi S, Pinot L, et al. Development of a positron probe for localization and excision of brain tumours during surgery. Phys Med Biol. 2009;54(14):4439–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Hoffman EJ, Tornai MP, Janecek M, Patt BE, Iwanczyk JS. Intraoperative probes and imaging probes. Eur J Nucl Med. 1999;26(8):913–35.CrossRefPubMedGoogle Scholar
  21. 21.
    Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med. 2000;30(1):33–48.CrossRefPubMedGoogle Scholar
  22. 22.
    Tiourina T, Arends B, Huysmans D, Rutten H, Lemaire B, Muller S. Evaluation of surgical gamma probes for radioguided sentinel node localisation. Eur J Nucl Med. 1998;25(9):1224–31.CrossRefPubMedGoogle Scholar
  23. 23.
    Mariani G, Vaiano A, Nibale O, Rubello D. Is the “ideal” gamma-probe for intraoperative radioguided surgery conceivable? J Nucl Med. 2005;46(3):388–90.PubMedGoogle Scholar
  24. 24.
    Haigh PI, Glass EC, Essner R. Accuracy of gamma probes in localizing radioactivity: in-vitro assessment and clinical implications. Cancer Biother Radiopharm. 2000;15(6):561–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Corporation. N. Bluetooth® Gamma Detection Probe. Neoprobe Corporation. 2013.Google Scholar
  26. 26.
    Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:11.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Hutchinson JR, Chagpar AB, Scoggins CR, Martin RC, Carlson DJ, Laidley AL, et al. Surgeon and community factors affecting breast cancer sentinel lymph node biopsy. Am J Surg. 2005;190(6):903–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Schwartz GF, Giuliano AE, Veronesi U, Committee CC. Proceedings of the consensus conference on the role of sentinel lymph node biopsy in carcinoma of the breast, April 19–22, 2001, Philadelphia, Pennsylvania. Cancer. 2002;94(10):2542–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Povoski SP, Olsen JO, Young DC, Clarke J, Burak WE, Walker MJ, et al. Prospective randomized clinical trial comparing intradermal, intraparenchymal, and subareolar injection routes for sentinel lymph node mapping and biopsy in breast cancer. Ann Surg Oncol. 2006;13(11):1412–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin RC, Chagpar A, Scoggins CR, Edwards MJ, Hagendoorn L, Stromberg AJ, et al. Clinicopathologic factors associated with false-negative sentinel lymph-node biopsy in breast cancer. Ann Surg. 2005;241(6):1005–12. Discussion 12–5.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Woznick A, Franco M, Bendick P, Benitez PR. Sentinel lymph node dissection for breast cancer: how many nodes are enough and which technique is optimal? Am J Surg. 2006;191(3):330–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Carmon M, Olsha O, Rivkin L, Spira RM, Golomb E. Intraoperative palpation for clinically suspicious axillary sentinel lymph nodes reduces the false-negative rate of sentinel lymph node biopsy in breast cancer. Breast J. 2006;12(3):199–201.CrossRefPubMedGoogle Scholar
  33. 33.
    Noguchi M. Current controversies concerning sentinel lymph node biopsy for breast cancer. Breast Cancer Res Treat. 2004;84(3):261–71.CrossRefPubMedGoogle Scholar
  34. 34.
    Tangoku A, Seike J, Nakano K, Nagao T, Honda J, Yoshida T, et al. Current status of sentinel lymph node navigation surgery in breast and gastrointestinal tract. J Med Invest. 2007;54(1–2):1–18.CrossRefPubMedGoogle Scholar
  35. 35.
    Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Chondrogiannis S, Ferretti A, Facci E, Marzola MC, Rampin L, Tadayyon S, et al. Intraoperative hand-held imaging γ-camera for sentinel node detection in patients with breast cancer: feasibility evaluation and preliminary experience on 16 patients. Clin Nucl Med. 2013;38(3):e132–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Mazière B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Wendler T, Traub J, Ziegler SI, Navab N. Navigated three dimensional beta probe for optimal cancer resection. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):561–9.PubMedGoogle Scholar
  39. 39.
    Singh B, Stack BC, Thacker S, Gaysinskiy V, Bartel T, Lowe V, et al. A hand-held beta imaging probe for FDG. Ann Nucl Med. 2013;27(3):203–8.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Matityahu A, Kahler D, Krettek C, Stöckle U, Grutzner PA, Messmer P, et al. 3D Navigation is more accurate than 2D navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study. J Orthop Trauma. 2014;28(12):707–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Hur JW, Kim JS, Cho DY, Shin JM, Lee JH, Lee SH. Video-assisted thoracoscopic surgery under O-Arm navigation system guidance for the treatment of thoracic disk herniations: surgical techniques and early clinical results. J Neurol Surg A Cent Eur Neurosurg. 2014;75(6):415–21.CrossRefPubMedGoogle Scholar
  42. 42.
    Sobottka SB, Bredow J, Beuthien-Baumann B, Reiss G, Schackert G, Steinmeier R. Comparison of functional brain PET images and intraoperative brain-mapping data using image-guided surgery. Comput Aided Surg. 2002;7(6):317–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang J, Suenaga H, Hoshi K, Yang L, Kobayashi E, Sakuma I, et al. Augmented reality navigation with automatic marker-free image registration using 3-d image overlay for dental surgery. IEEE Trans Biomed Eng. 2014;61(4):1295–304.CrossRefPubMedGoogle Scholar
  44. 44.
    Dixon BJ, Daly MJ, Chan H, Vescan A, Witterick IJ, Irish JC. Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery. Laryngoscope. 2014;124(4):853–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Gonzalez SJM, Yanhui Guo P, Lee CM MD, Morse D PhD, Drukteinis JM. Feasibility of augmented/virtual reality glasses for real-time, 3D intraoperative guidance. Presentation, 2014 H. Lee Moffitt cancer center and research institute scientific symposium.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.H. Lee Moffitt Cancer CenterTampaUSA
  2. 2.Surgery DepartmentMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations