Skip to main content

New Generation Radiosurgery and Intraoperative Guidance

  • Chapter
  • First Online:
Imaging and Visualization in The Modern Operating Room

Abstract

The evolution of intraoperative guidance, focusing on gamma and beta rays and their use in radio-guided surgery is comprehensively discussed in this chapter. The clinical utility of alpha, beta, and gamma rays is presented, as well as the pertinent components of an intraoperative probe for proper localization of radiosensitive areas. Commonly used radioisotopes for beta and gamma probe detection, along with their advantages and limitations, are also discussed. Clinical applications of the 18F atom are described, as the use of 18F-fluorodeoxyglucose (18F FDG) has increased significantly in the last several years. New technologies are discussed, including surgical visualization with the use of 3D image reconstruction, position tracking, as well as augmented and virtual reality technologies. These show a great promise of rapidly expanding this surgical field for the use and benefit of the next generation of surgeons and their patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris CC, Bigelow RR, Francis JE, Kelly GG, Bell P. A Csi(Ti)-crystal surgical scintillation probe. Nucleonics. 1956;14:102–8.

    Google Scholar 

  2. Imaging I. Beta Probes http://www.gammaprobe.com: Intramedical Imaging; 2013 [cited 2013]. http://www.gammaprobe.com/products/beta-probes/.

  3. Raylman RR, Wahl RL. A fiber-optically coupled positron-sensitive surgical probe. J Nucl Med. 1994;35(5):909–13.

    CAS  PubMed  Google Scholar 

  4. Strong VE, Galanis CJ, Riedl CC, Longo VA, Daghighian F, Humm JL, et al. Portable PET probes are a novel tool for intraoperative localization of tumor deposits. Ann Surg Innov Res. 2009;3:2.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Janicki C, Seuntjens J. Re-evaluation of the dose to the cyst wall in P-32 radiocolloid treatments of cystic brain tumors using the dose-point-kernel and Monte Carlo methods. Med Phys. 2003;30(9):2475–81.

    Article  CAS  PubMed  Google Scholar 

  6. González SJ, Wong J, González L, Brader P, Zakowski M, Gönen M, et al. Novel handheld PET probes provide intraoperative localization of PET-avid lymph nodes. Surg Endosc. 2011;25(10):3214–21.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Garcia-Parra R, Clinthorne N, Wang L, Picchio M, Piert M. Performance of beta- and high-energy gamma probes for the detection of cancer tissue in experimental surgical resection beds. Ann Nucl Med. 2011;25(7):486–93.

    Article  PubMed  Google Scholar 

  8. Tsuchimochi M, Sakahara H, Hayama K, Funaki M, Ohno R, Shirahata T, et al. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications. Eur J Nucl Med Mol Imaging. 2003;30(12):1605–14.

    Article  PubMed  Google Scholar 

  9. Daghighian F, Mazziotta JC, Hoffman EJ, Shenderov P, Eshaghian B, Siegel S, et al. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21(1):153–7.

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto S, Matsumoto K, Sakamoto S, Tarutani K, Minato K, Senda M. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19(1):23–8.

    Article  PubMed  Google Scholar 

  11. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gillies RJ, Gatenby RA. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr. 2007;39(3):251–7.

    Article  CAS  PubMed  Google Scholar 

  13. Buck AK, Reske SN. Cellular origin and molecular mechanisms of 18F-FDG uptake: is there a contribution of the endothelium? J Nucl Med. 2004;45(3):461–3.

    CAS  PubMed  Google Scholar 

  14. Gulec SA. PET probe-guided surgery. J Surg Oncol. 2007;96(4):353–7.

    Article  PubMed  Google Scholar 

  15. Sun D, Bloomston M, Hinkle G, Al-Saif OH, Hall NC, Povoski SP, et al. Radioimmunoguided surgery (RIGS), PET/CT image-guided surgery, and fluorescence image-guided surgery: past, present, and future. J Surg Oncol. 2007;96(4):297–308.

    Article  CAS  PubMed  Google Scholar 

  16. González SJ, González L, Wong J, Brader P, Zakowski M, Gönen M, et al. An analysis of the utility of handheld PET probes for the intraoperative localization of malignant tissue. J Gastrointest Surg. 2011;15(2):358–66.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Strong VE, Humm J, Russo P, Jungbluth A, Wong WD, Daghighian F, et al. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc. 2008;22(2):386–91.

    Article  PubMed  Google Scholar 

  18. Woolfenden JM, Barber HB. Radiation detector probes for tumor localization using tumor-seeking radioactive tracers. AJR Am J Roentgenol. 1989;153(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bogalhas F, Charon Y, Duval MA, Lefebvre F, Palfi S, Pinot L, et al. Development of a positron probe for localization and excision of brain tumours during surgery. Phys Med Biol. 2009;54(14):4439–53.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffman EJ, Tornai MP, Janecek M, Patt BE, Iwanczyk JS. Intraoperative probes and imaging probes. Eur J Nucl Med. 1999;26(8):913–35.

    Article  CAS  PubMed  Google Scholar 

  21. Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med. 2000;30(1):33–48.

    Article  CAS  PubMed  Google Scholar 

  22. Tiourina T, Arends B, Huysmans D, Rutten H, Lemaire B, Muller S. Evaluation of surgical gamma probes for radioguided sentinel node localisation. Eur J Nucl Med. 1998;25(9):1224–31.

    Article  CAS  PubMed  Google Scholar 

  23. Mariani G, Vaiano A, Nibale O, Rubello D. Is the “ideal” gamma-probe for intraoperative radioguided surgery conceivable? J Nucl Med. 2005;46(3):388–90.

    PubMed  Google Scholar 

  24. Haigh PI, Glass EC, Essner R. Accuracy of gamma probes in localizing radioactivity: in-vitro assessment and clinical implications. Cancer Biother Radiopharm. 2000;15(6):561–9.

    Article  CAS  PubMed  Google Scholar 

  25. Corporation. N. Bluetooth® Gamma Detection Probe. Neoprobe Corporation. 2013.

    Google Scholar 

  26. Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:11.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hutchinson JR, Chagpar AB, Scoggins CR, Martin RC, Carlson DJ, Laidley AL, et al. Surgeon and community factors affecting breast cancer sentinel lymph node biopsy. Am J Surg. 2005;190(6):903–6.

    Article  PubMed  Google Scholar 

  28. Schwartz GF, Giuliano AE, Veronesi U, Committee CC. Proceedings of the consensus conference on the role of sentinel lymph node biopsy in carcinoma of the breast, April 19–22, 2001, Philadelphia, Pennsylvania. Cancer. 2002;94(10):2542–51.

    Article  PubMed  Google Scholar 

  29. Povoski SP, Olsen JO, Young DC, Clarke J, Burak WE, Walker MJ, et al. Prospective randomized clinical trial comparing intradermal, intraparenchymal, and subareolar injection routes for sentinel lymph node mapping and biopsy in breast cancer. Ann Surg Oncol. 2006;13(11):1412–21.

    Article  PubMed  Google Scholar 

  30. Martin RC, Chagpar A, Scoggins CR, Edwards MJ, Hagendoorn L, Stromberg AJ, et al. Clinicopathologic factors associated with false-negative sentinel lymph-node biopsy in breast cancer. Ann Surg. 2005;241(6):1005–12. Discussion 12–5.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Woznick A, Franco M, Bendick P, Benitez PR. Sentinel lymph node dissection for breast cancer: how many nodes are enough and which technique is optimal? Am J Surg. 2006;191(3):330–3.

    Article  PubMed  Google Scholar 

  32. Carmon M, Olsha O, Rivkin L, Spira RM, Golomb E. Intraoperative palpation for clinically suspicious axillary sentinel lymph nodes reduces the false-negative rate of sentinel lymph node biopsy in breast cancer. Breast J. 2006;12(3):199–201.

    Article  PubMed  Google Scholar 

  33. Noguchi M. Current controversies concerning sentinel lymph node biopsy for breast cancer. Breast Cancer Res Treat. 2004;84(3):261–71.

    Article  PubMed  Google Scholar 

  34. Tangoku A, Seike J, Nakano K, Nagao T, Honda J, Yoshida T, et al. Current status of sentinel lymph node navigation surgery in breast and gastrointestinal tract. J Med Invest. 2007;54(1–2):1–18.

    Article  PubMed  Google Scholar 

  35. Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chondrogiannis S, Ferretti A, Facci E, Marzola MC, Rampin L, Tadayyon S, et al. Intraoperative hand-held imaging γ-camera for sentinel node detection in patients with breast cancer: feasibility evaluation and preliminary experience on 16 patients. Clin Nucl Med. 2013;38(3):e132–6.

    Article  PubMed  Google Scholar 

  37. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Mazière B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.

    Article  CAS  PubMed  Google Scholar 

  38. Wendler T, Traub J, Ziegler SI, Navab N. Navigated three dimensional beta probe for optimal cancer resection. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):561–9.

    PubMed  Google Scholar 

  39. Singh B, Stack BC, Thacker S, Gaysinskiy V, Bartel T, Lowe V, et al. A hand-held beta imaging probe for FDG. Ann Nucl Med. 2013;27(3):203–8.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Matityahu A, Kahler D, Krettek C, Stöckle U, Grutzner PA, Messmer P, et al. 3D Navigation is more accurate than 2D navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study. J Orthop Trauma. 2014;28(12):707–10.

    Article  PubMed  Google Scholar 

  41. Hur JW, Kim JS, Cho DY, Shin JM, Lee JH, Lee SH. Video-assisted thoracoscopic surgery under O-Arm navigation system guidance for the treatment of thoracic disk herniations: surgical techniques and early clinical results. J Neurol Surg A Cent Eur Neurosurg. 2014;75(6):415–21.

    Article  PubMed  Google Scholar 

  42. Sobottka SB, Bredow J, Beuthien-Baumann B, Reiss G, Schackert G, Steinmeier R. Comparison of functional brain PET images and intraoperative brain-mapping data using image-guided surgery. Comput Aided Surg. 2002;7(6):317–25.

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Suenaga H, Hoshi K, Yang L, Kobayashi E, Sakuma I, et al. Augmented reality navigation with automatic marker-free image registration using 3-d image overlay for dental surgery. IEEE Trans Biomed Eng. 2014;61(4):1295–304.

    Article  PubMed  Google Scholar 

  44. Dixon BJ, Daly MJ, Chan H, Vescan A, Witterick IJ, Irish JC. Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery. Laryngoscope. 2014;124(4):853–9.

    Article  PubMed  Google Scholar 

  45. Gonzalez SJM, Yanhui Guo P, Lee CM MD, Morse D PhD, Drukteinis JM. Feasibility of augmented/virtual reality glasses for real-time, 3D intraoperative guidance. Presentation, 2014 H. Lee Moffitt cancer center and research institute scientific symposium.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Strong MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

González, S., Strong, V. (2015). New Generation Radiosurgery and Intraoperative Guidance. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics