Skip to main content

New Preoperative Images, Surgical Planning, and Navigation

  • Chapter
  • First Online:
Imaging and Visualization in The Modern Operating Room

Abstract

Surgical planning and navigation systems now play a significant role in the way treatment decisions are made in many surgical disciplines, including neurosurgery and orthopedic surgery. Advanced visualization techniques such as volume and surface rendering enable three-dimensional (3D) visualization and volumetric analysis of traditional two-dimensional (2D) diagnostic images (e.g., CT, MRI, PET), allowing the surgeon to plan their procedure with greater confidence and based on more detailed (and often, more quantitative) information. Currently available navigation systems augment surgical procedures by allowing surgeons to track their instruments in real-time relative to these preoperative images and patient-specific surgical plans. Real-time instrument tracking enables surgeons to quickly localize areas of interest such as cancerous tumors or major vascular structures. Additionally, there are many approaches to mapping multiple imaging modalities to the surgical field, which can greatly enhance the amount of information available to the operating surgeon. Future efforts in this field will be focused on increasing the accuracy and automation of image processing and intraoperative registration methods and more streamlined integration with surgical therapeutic instruments (e.g., resection and ablation devices), intraoperative imaging, robotics, and augmented reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunvén P, Makuuchi M, Takayasu K, Moriyama N, Yamasaki S, Hasegawa H. Preoperative imaging of liver metastases. Comparison of angiography, CT scan, and ultrasonography. Ann Surg. 1985;202(5):573.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Vannier MW, Marsh JL, Warren JO, Editors. Three dimensional computer graphics for craniofacial surgical planning and evaluation. New York: ACM SIGGRAPH Computer Graphics, ACM; 1983.

    Google Scholar 

  3. Ewers R, Schicho K, Undt G, Wanschitz F, Truppe M, Seemann R, et al. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. Int J Oral Maxillofac Surg. 2005;34(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  4. Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26(2):73–99.

    Article  CAS  PubMed  Google Scholar 

  5. Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices. 2012;9(5):491–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Maciunas RJ. Computer-assisted neurosurgery. Clin Neurosurg. 2006;53:267.

    PubMed  Google Scholar 

  7. Weinberg JS, Lang FF, Sawaya R. Surgical management of brain metastases. Curr Oncol Rep. 2001;3(6):476–83.

    Article  CAS  PubMed  Google Scholar 

  8. Donati M, Basile F, Stavrou GA, Oldhafer KJ. Navigation systems in liver surgery: the new challenge for surgical research. J Laparoendosc Adv Surg Tech. 2013;23(4):372–5.

    Article  Google Scholar 

  9. Galloway RL, Herrell SD, Miga MI. Image-guided abdominal surgery and therapy delivery. J Healthc Eng. 2012;3(2):203–28.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sindram D, Simo KA, Swan RZ, Razzaque S, Niemeyer DJ, Seshadri RM, et al. Laparoscopic microwave ablation of human liver tumours using a novel three-dimensional magnetic guidance system. HPB. 2015;17(1):87-93.

    Google Scholar 

  11. Cavalcanti M, Rocha S, Vannier M. Craniofacial measurements based on 3D-CT volume rendering: implications for clinical applications. 2014. INCOMPLETE?

    Google Scholar 

  12. Gao L, Heath DG, Kuszyk B, Fishman EK. Automatic liver segmentation technique for three-dimensional visualization of CT data. Radiology. 1996;201:359–64.

    Article  CAS  PubMed  Google Scholar 

  13. Xu H-X, Lu M-D, Zhou Y-Q, Zhang Q-P, Yin X-Y, Xie X-Y, et al. Three-dimensional gray scale volume rendering of the liver preliminary clinical experience. J Ultrasound Med. 2002;21(9):961–70.

    PubMed  Google Scholar 

  14. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 2006;26(3):905–22.

    Article  PubMed  Google Scholar 

  15. Simpson ALCL, Miga MI, Dumpuri P, Gonen M, Geller DA, Hemming AW, Stefansic JD., D’Angelica M, Jarnagin WR. Predicting post-operative liver volume: accuracy of dedicated liver planning software and assessment of early regeneration. J Am Coll Surg. 2014;219(2):199-207 [In Press].

    Google Scholar 

  16. Hansen C, Zidowitz S, Hindennach M, Schenk A, Hahn H, Peitgen H-O. Interactive determination of robust safety margins for oncologic liver surgery. Int J Comput Assist Radiol Surg. 2013;3:1–8.

    Article  PubMed  Google Scholar 

  17. Hansen C, Zidowitz S, Preim B, Stavrou G, Oldhafer K, Hahn H. Impact of model-based risk analysis for liver surgery planning. Int J Comput Assist Radiol Surg. 2013:1–8.

    Google Scholar 

  18. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation 1. Ann Rev Biomed Eng. 2000;2(1):315–37.

    Article  CAS  Google Scholar 

  19. Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging. 2009;28(8):1251–65.

    Article  PubMed  Google Scholar 

  20. Shang Q, Clements L, Galloway RL, Chapman WC, Dawant BM, Editors. Adaptive directional region growing segmentation of the hepatic vasculature. Medical imaging. Bellingham: International Society for Optics and Photonics; 2008.

    Google Scholar 

  21. Cabezas M, Oliver A, Lladó X, Freixenet J, Bach Cuadra M. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed. 2011;104(3):e158–77.

    Article  PubMed  Google Scholar 

  22. Maintz J, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2(1):1–36.

    Article  CAS  PubMed  Google Scholar 

  23. DuBray BJ Jr, Levy RV, Balachandran P, Conzen KD, Upadhya GA, Anderson CD, et al. Novel three-dimensional imaging technique improves the accuracy of hepatic volumetric assessment. HPB. 2011;13(9):670–4.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Narita M, Oussoultzoglou E, Fuchshuber P, Pessaux P, Chenard M-P, Rosso E, et al. What is a safe future liver remnant size in patients undergoing major hepatectomy for colorectal liver metastases and treated by intensive preoperative chemotherapy? Ann Surg Oncol. 2012;19(8):2526–38.

    Article  PubMed  Google Scholar 

  25. Tong C, Xu X, Liu C, Zhang T, Qu K. Assessment of liver volume variation to evaluate liver function. Front Med. 2012;6(4):421–7.

    Article  PubMed  Google Scholar 

  26. Wald C, Bourquain H. Role of new three-dimensional image analysis techniques in planning of live donor liver transplantation, liver resection, and intervention. J Gastrointest Surg. 2006;10(2):161–5.

    Article  PubMed  Google Scholar 

  27. Mu X, Qian X, Tan Z, Lv L, Lu S, Hui N, et al. Successful adult-to-adult liver transplantation of an otherwise discarded partial liver allograft with a cavernous hemangioma: new strategy for expanding liver donor pool. Transpl Int. 2013;26(9):e79–80.

    Article  PubMed  Google Scholar 

  28. Butz T, Warfield SK, Tuncali K, Silverman SG, van Sonnenberg E, Jolesz FA, et al., Editors. Pre-and intra-operative planning and simulation of percutaneous tumor ablation. Medical image computing and computer-assisted intervention–MICCAI 2000. Berlin: Springer; 2000.

    Google Scholar 

  29. Chen C-C, Miga MI, Galloway RL. Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning. IEEE Trans Biomed Eng. 2009;56(2):237–45.

    Article  PubMed  Google Scholar 

  30. Wiles AD, Thompson DG, Frantz DD, Editors. Accuracy assessment and interpretation for optical tracking systems. Medical imaging 2004. Bellingham: International Society for Optics and Photonics; 2004.

    Google Scholar 

  31. Bucholz R, Yeh D, Trobaugh J, McDurmont L, Sturm C, Baumann C, et al. The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. In: Troccaz J, Grimson E, Mösges R, editors. CVRMed-MRCAS’97. Berlin: Springer; 1997. pp. 459–66.

    Chapter  Google Scholar 

  32. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol. 2001;56(6):357–64.

    Article  CAS  PubMed  Google Scholar 

  33. Bale R. Multimodality registration in daily clinical practice. Mathematical models for registration and applications to medical imaging. Berlin: Springer; 2006. pp. 165–83.

    Book  Google Scholar 

  34. Galiano K, Obwegeser AA, Bale R, Harlander C, Schatzer R, Schocke M, et al. Ultrasound-guided and CT-navigation-assisted periradicular and facet joint injections in the lumbar and cervical spine: a new teaching tool to recognize the sonoanatomic pattern. Reg Anesth Pain Med. 2007;32(3):254–7.

    PubMed  Google Scholar 

  35. Lindseth F, Kaspersen JH, Ommedal S, Langø T, Bang J, Hokland J, et al. Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg. 2003;8(2):49–69.

    Article  PubMed  Google Scholar 

  36. Singh AK, Kruecker J, Xu S, Glossop N, Guion P, Ullman K, et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int. 2008;101(7):841–5.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hassfeld S, Mühling J. Computer assisted oral and maxillofacial surgery—a review and an assessment of technology. Int J Oral Maxillofac Surg. 2001;30(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  38. Hammill CW, Clements LW, Stefansic JD, Wolf RF, Hansen PD, Gerber DA. Evaluation of a minimally invasive image-guided surgery system for hepatic ablation procedures. Surg Innov. 2013;21(4):419–26:1553350613508019.

    Google Scholar 

  39. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Guo Y, Werahera PN, Narayanan R, Li L, Kumar D, Crawford ED, et al. Image registration accuracy of a 3-dimensional transrectal ultrasound–guided prostate biopsy system. J Ultrasound Med. 2009;28(11):1561–8.

    PubMed  Google Scholar 

  41. Santos RS, Gupta A, Ebright MI, DeSimone M, Steiner G, Estrada M-J, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg. 2010;89(1):265–8.

    Article  PubMed  Google Scholar 

  42. Peterhans M, Vom Berg A, Dagon B, Inderbitzin D, Baur C, Candinas D, et al. A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot. 2011;7(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  43. Kingham TP, Scherer MA, Neese BW, Clements LW, Stefansic JD, Jarnagin WR. Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB. 2012;14(9):594–603.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bischof D, Clary B, Maithel S, Pawlik T. Surgical management of disappearing colorectal liver metastases. Br J Surg. 2013;100(11):1414–20.

    Article  CAS  PubMed  Google Scholar 

  45. Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepatobiliary Pancreat Sci. 2011;18(4):506–9.

    Article  PubMed  Google Scholar 

  46. Aoki T, Yasuda D, Shimizu Y, Odaira M, Niiya T, Kusano T, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg. 2008;32(8):1763–7.

    Article  PubMed  Google Scholar 

  47. Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12(3):211–5.

    Article  PubMed  Google Scholar 

  48. Silbermann J, Riese F, Allam Y, Reichert T, Koeppert H, Gutberlet M. Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J. 2011;20(6):875–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Tormenti MJ, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO. Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus. 2010;28(3):E11.

    Article  PubMed  Google Scholar 

  50. Abdullah BJJ, Yeong CH, Goh KL, Yoong BK, Ho GF, Yim CCW, et al. Robot-assisted radiofrequency ablation of primary and secondary liver tumours: early experience. Eur Radiol. 2014;24(1):79–85.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Patriciu A, Awad M, Solomon SB, Choti M, Mazilu D, Kavoussi L, et al. Robotic assisted radio-frequency ablation of liver tumors—randomized patient study. Med Image Comput Comput Assist Interv. 2005;8:526–33 (Springer).

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank representatives from Vital Images, Inc. and CAScination AG for assistance in preparing some of the figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Geller MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scherer, M., Geller, D. (2015). New Preoperative Images, Surgical Planning, and Navigation. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics