New Preoperative Images, Surgical Planning, and Navigation

  • Michael A. Scherer
  • David A. Geller


Surgical planning and navigation systems now play a significant role in the way treatment decisions are made in many surgical disciplines, including neurosurgery and orthopedic surgery. Advanced visualization techniques such as volume and surface rendering enable three-dimensional (3D) visualization and volumetric analysis of traditional two-dimensional (2D) diagnostic images (e.g., CT, MRI, PET), allowing the surgeon to plan their procedure with greater confidence and based on more detailed (and often, more quantitative) information. Currently available navigation systems augment surgical procedures by allowing surgeons to track their instruments in real-time relative to these preoperative images and patient-specific surgical plans. Real-time instrument tracking enables surgeons to quickly localize areas of interest such as cancerous tumors or major vascular structures. Additionally, there are many approaches to mapping multiple imaging modalities to the surgical field, which can greatly enhance the amount of information available to the operating surgeon. Future efforts in this field will be focused on increasing the accuracy and automation of image processing and intraoperative registration methods and more streamlined integration with surgical therapeutic instruments (e.g., resection and ablation devices), intraoperative imaging, robotics, and augmented reality.


Surgical navigation Computer-assisted surgery Image-guided surgery Image-guided liver surgery Soft-tissue navigation Image-guided ablation Image fusion Surgical planning Volumetric analysis 



The authors would like to thank representatives from Vital Images, Inc. and CAScination AG for assistance in preparing some of the figures in this chapter.


  1. 1.
    Gunvén P, Makuuchi M, Takayasu K, Moriyama N, Yamasaki S, Hasegawa H. Preoperative imaging of liver metastases. Comparison of angiography, CT scan, and ultrasonography. Ann Surg. 1985;202(5):573.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Vannier MW, Marsh JL, Warren JO, Editors. Three dimensional computer graphics for craniofacial surgical planning and evaluation. New York: ACM SIGGRAPH Computer Graphics, ACM; 1983.Google Scholar
  3. 3.
    Ewers R, Schicho K, Undt G, Wanschitz F, Truppe M, Seemann R, et al. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. Int J Oral Maxillofac Surg. 2005;34(1):1–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26(2):73–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices. 2012;9(5):491–500.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Maciunas RJ. Computer-assisted neurosurgery. Clin Neurosurg. 2006;53:267.PubMedGoogle Scholar
  7. 7.
    Weinberg JS, Lang FF, Sawaya R. Surgical management of brain metastases. Curr Oncol Rep. 2001;3(6):476–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Donati M, Basile F, Stavrou GA, Oldhafer KJ. Navigation systems in liver surgery: the new challenge for surgical research. J Laparoendosc Adv Surg Tech. 2013;23(4):372–5.CrossRefGoogle Scholar
  9. 9.
    Galloway RL, Herrell SD, Miga MI. Image-guided abdominal surgery and therapy delivery. J Healthc Eng. 2012;3(2):203–28.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Sindram D, Simo KA, Swan RZ, Razzaque S, Niemeyer DJ, Seshadri RM, et al. Laparoscopic microwave ablation of human liver tumours using a novel three-dimensional magnetic guidance system. HPB. 2015;17(1):87-93.Google Scholar
  11. 11.
    Cavalcanti M, Rocha S, Vannier M. Craniofacial measurements based on 3D-CT volume rendering: implications for clinical applications. 2014. INCOMPLETE?Google Scholar
  12. 12.
    Gao L, Heath DG, Kuszyk B, Fishman EK. Automatic liver segmentation technique for three-dimensional visualization of CT data. Radiology. 1996;201:359–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Xu H-X, Lu M-D, Zhou Y-Q, Zhang Q-P, Yin X-Y, Xie X-Y, et al. Three-dimensional gray scale volume rendering of the liver preliminary clinical experience. J Ultrasound Med. 2002;21(9):961–70.PubMedGoogle Scholar
  14. 14.
    Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 2006;26(3):905–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Simpson ALCL, Miga MI, Dumpuri P, Gonen M, Geller DA, Hemming AW, Stefansic JD., D’Angelica M, Jarnagin WR. Predicting post-operative liver volume: accuracy of dedicated liver planning software and assessment of early regeneration. J Am Coll Surg. 2014;219(2):199-207 [In Press].Google Scholar
  16. 16.
    Hansen C, Zidowitz S, Hindennach M, Schenk A, Hahn H, Peitgen H-O. Interactive determination of robust safety margins for oncologic liver surgery. Int J Comput Assist Radiol Surg. 2013;3:1–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Hansen C, Zidowitz S, Preim B, Stavrou G, Oldhafer K, Hahn H. Impact of model-based risk analysis for liver surgery planning. Int J Comput Assist Radiol Surg. 2013:1–8.Google Scholar
  18. 18.
    Pham DL, Xu C, Prince JL. Current methods in medical image segmentation 1. Ann Rev Biomed Eng. 2000;2(1):315–37.CrossRefGoogle Scholar
  19. 19.
    Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging. 2009;28(8):1251–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Shang Q, Clements L, Galloway RL, Chapman WC, Dawant BM, Editors. Adaptive directional region growing segmentation of the hepatic vasculature. Medical imaging. Bellingham: International Society for Optics and Photonics; 2008.Google Scholar
  21. 21.
    Cabezas M, Oliver A, Lladó X, Freixenet J, Bach Cuadra M. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed. 2011;104(3):e158–77.CrossRefPubMedGoogle Scholar
  22. 22.
    Maintz J, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2(1):1–36.CrossRefPubMedGoogle Scholar
  23. 23.
    DuBray BJ Jr, Levy RV, Balachandran P, Conzen KD, Upadhya GA, Anderson CD, et al. Novel three-dimensional imaging technique improves the accuracy of hepatic volumetric assessment. HPB. 2011;13(9):670–4.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Narita M, Oussoultzoglou E, Fuchshuber P, Pessaux P, Chenard M-P, Rosso E, et al. What is a safe future liver remnant size in patients undergoing major hepatectomy for colorectal liver metastases and treated by intensive preoperative chemotherapy? Ann Surg Oncol. 2012;19(8):2526–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Tong C, Xu X, Liu C, Zhang T, Qu K. Assessment of liver volume variation to evaluate liver function. Front Med. 2012;6(4):421–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Wald C, Bourquain H. Role of new three-dimensional image analysis techniques in planning of live donor liver transplantation, liver resection, and intervention. J Gastrointest Surg. 2006;10(2):161–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Mu X, Qian X, Tan Z, Lv L, Lu S, Hui N, et al. Successful adult-to-adult liver transplantation of an otherwise discarded partial liver allograft with a cavernous hemangioma: new strategy for expanding liver donor pool. Transpl Int. 2013;26(9):e79–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Butz T, Warfield SK, Tuncali K, Silverman SG, van Sonnenberg E, Jolesz FA, et al., Editors. Pre-and intra-operative planning and simulation of percutaneous tumor ablation. Medical image computing and computer-assisted intervention–MICCAI 2000. Berlin: Springer; 2000.Google Scholar
  29. 29.
    Chen C-C, Miga MI, Galloway RL. Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning. IEEE Trans Biomed Eng. 2009;56(2):237–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Wiles AD, Thompson DG, Frantz DD, Editors. Accuracy assessment and interpretation for optical tracking systems. Medical imaging 2004. Bellingham: International Society for Optics and Photonics; 2004.Google Scholar
  31. 31.
    Bucholz R, Yeh D, Trobaugh J, McDurmont L, Sturm C, Baumann C, et al. The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. In: Troccaz J, Grimson E, Mösges R, editors. CVRMed-MRCAS’97. Berlin: Springer; 1997. pp. 459–66.CrossRefGoogle Scholar
  32. 32.
    Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol. 2001;56(6):357–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Bale R. Multimodality registration in daily clinical practice. Mathematical models for registration and applications to medical imaging. Berlin: Springer; 2006. pp. 165–83.CrossRefGoogle Scholar
  34. 34.
    Galiano K, Obwegeser AA, Bale R, Harlander C, Schatzer R, Schocke M, et al. Ultrasound-guided and CT-navigation-assisted periradicular and facet joint injections in the lumbar and cervical spine: a new teaching tool to recognize the sonoanatomic pattern. Reg Anesth Pain Med. 2007;32(3):254–7.PubMedGoogle Scholar
  35. 35.
    Lindseth F, Kaspersen JH, Ommedal S, Langø T, Bang J, Hokland J, et al. Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg. 2003;8(2):49–69.CrossRefPubMedGoogle Scholar
  36. 36.
    Singh AK, Kruecker J, Xu S, Glossop N, Guion P, Ullman K, et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int. 2008;101(7):841–5.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Hassfeld S, Mühling J. Computer assisted oral and maxillofacial surgery—a review and an assessment of technology. Int J Oral Maxillofac Surg. 2001;30(1):2–13.CrossRefPubMedGoogle Scholar
  38. 38.
    Hammill CW, Clements LW, Stefansic JD, Wolf RF, Hansen PD, Gerber DA. Evaluation of a minimally invasive image-guided surgery system for hepatic ablation procedures. Surg Innov. 2013;21(4):419–26:1553350613508019.Google Scholar
  39. 39.
    Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Guo Y, Werahera PN, Narayanan R, Li L, Kumar D, Crawford ED, et al. Image registration accuracy of a 3-dimensional transrectal ultrasound–guided prostate biopsy system. J Ultrasound Med. 2009;28(11):1561–8.PubMedGoogle Scholar
  41. 41.
    Santos RS, Gupta A, Ebright MI, DeSimone M, Steiner G, Estrada M-J, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg. 2010;89(1):265–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Peterhans M, Vom Berg A, Dagon B, Inderbitzin D, Baur C, Candinas D, et al. A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot. 2011;7(1):7–16.CrossRefPubMedGoogle Scholar
  43. 43.
    Kingham TP, Scherer MA, Neese BW, Clements LW, Stefansic JD, Jarnagin WR. Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB. 2012;14(9):594–603.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Bischof D, Clary B, Maithel S, Pawlik T. Surgical management of disappearing colorectal liver metastases. Br J Surg. 2013;100(11):1414–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepatobiliary Pancreat Sci. 2011;18(4):506–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Aoki T, Yasuda D, Shimizu Y, Odaira M, Niiya T, Kusano T, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg. 2008;32(8):1763–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12(3):211–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Silbermann J, Riese F, Allam Y, Reichert T, Koeppert H, Gutberlet M. Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J. 2011;20(6):875–81.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Tormenti MJ, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO. Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus. 2010;28(3):E11.CrossRefPubMedGoogle Scholar
  50. 50.
    Abdullah BJJ, Yeong CH, Goh KL, Yoong BK, Ho GF, Yim CCW, et al. Robot-assisted radiofrequency ablation of primary and secondary liver tumours: early experience. Eur Radiol. 2014;24(1):79–85.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Patriciu A, Awad M, Solomon SB, Choti M, Mazilu D, Kavoussi L, et al. Robotic assisted radio-frequency ablation of liver tumors—randomized patient study. Med Image Comput Comput Assist Interv. 2005;8:526–33 (Springer).PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Analogic CorporationPeabodyUSA
  2. 2.University of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations