Skip to main content

Near-Infrared Imaging with Fluorescent Tracers in Robotic Surgery

  • Chapter
  • First Online:
  • 1117 Accesses

Abstract

From a surgeon’s perspective, one of the most desired aspects of surgery is the ability to obtain the most information about the operative field. With the advent of minimally invasive surgery, the need for better visualization techniques has increased because of the reduced amount of direct feedback from tissues that the surgeon usually receives in open surgery. Near-infrared (NIR) imaging is one of such technologies which, combined with three-dimensional high-definition view, provides details in robotic surgery, which are otherwise not available to the surgeon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Verbeek FP, van der Vorst JR, Schaafsma BE, Hutteman M, Bonsing BA, van Leeuwen FW, et al. Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light. J Hepatobiliary Pancreat Sci. 2012;19(6):626–37. Epub 2012/07/14.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Landsman ML, Kwant G, Mook GA, Zijlstra WG. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol. 1976;40(4):575–83. Epub 1976/04/01.

    CAS  PubMed  Google Scholar 

  3. Guyer DR, Puliafito CA, Mones JM, Friedman E, Chang W, Verdooner SR. Digital indocyanine-green angiography in chorioretinal disorders. Ophthalmology. 1992;99(2):287–91. Epub 1992/02/01.

    Article  CAS  PubMed  Google Scholar 

  4. Ogata F, Azuma R, Kikuchi M, Koshima I, Morimoto Y. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling. Ann Plast Surg. 2007;58(6):652–5. Epub 2007/05/25.

    Article  CAS  PubMed  Google Scholar 

  5. Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12(3):211–5. Epub 2005/08/20.

    Article  PubMed  Google Scholar 

  6. Rubens FD, Ruel M, Fremes SE. A new and simplified method for coronary and graft imaging during CABG. Heart Surg Forum. 2002;5(2):141–4. Epub 2002/07/13.

    PubMed  Google Scholar 

  7. Raabe A, Nakaji P, Beck J, Kim LJ, Hsu FP, Kamerman JD, et al. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg. 2005;103(6):982–9. Epub 2005/12/31.

    Article  PubMed  Google Scholar 

  8. Marshall MV, Rasmussen JC, Tan IC, Aldrich MB, Adams KE, Wang X, et al. Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J. 2010;2(2):12–25. Epub 2010/01/01.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging. 2009;8(6):341–54. Epub 2009/12/17.

    CAS  PubMed  Google Scholar 

  10. Daskalaki D, Fernandes E, Wang X, Bianco FM, Elli EF, Ayloo S, et al. Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. 2014;21:615–21. Epub 2014/03/13.

    Article  PubMed  Google Scholar 

  11. Marano A, Priora F, Lenti LM, Ravazzoni F, Quarati R, Spinoglio G. Application of fluorescence in robotic general surgery: review of the literature and state of the art. World J Surg. 2013;37(12):2800–11. Epub 2013/05/07.

    Article  PubMed  Google Scholar 

  12. Bjurlin MA, Gan M, McClintock TR, Volpe A, Borofsky MS, Mottrie A, et al. Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol. 2014;65(4):793–801. Epub 2013/10/09.

    Article  PubMed  Google Scholar 

  13. Rossi EC, Ivanova A, Boggess JF. Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study. Gynecol Oncol. 2012;124(1):78–82. Epub 2011/10/15.

    Article  PubMed  Google Scholar 

  14. Wagner OJ, Louie BE, Vallieres E, Aye RW, Farivar AS. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thorac Surg. 2012;94(2):622–5. Epub 2012/07/24.

    Article  PubMed  Google Scholar 

  15. Pardolesi A, Veronesi G, Solli P, Spaggiari L. Use of indocyanine green to facilitate intersegmental plane identification during robotic anatomic segmentectomy. J Thorac Cardiovasc Surg. 2014;148:737–8. Epub 2014/04/01.

    Article  PubMed  Google Scholar 

  16. Tanaka E, Chen FY, Flaumenhaft R, Graham GJ, Laurence RG, Frangioni JV. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg. 2009;138(1):133–40. Epub 2009/07/07.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32(29):7127–38. Epub 2011/07/05.

    Article  CAS  PubMed  Google Scholar 

  18. Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013;111(4):604–10. Epub 2012/12/21.

    Article  PubMed  Google Scholar 

  19. Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27:3003–8. Epub 2013/02/14.

    Article  PubMed  Google Scholar 

  20. Bae SU, Baek SJ, Hur H, Baik SH, Kim NK, Min BS. Intraoperative near infrared fluorescence imaging in robotic low anterior resection: three case reports. Yonsei Med J. 2013;54(4):1066–9. Epub 2013/05/28.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28(5):1695–702. Epub 2014/01/05.

    Article  PubMed  Google Scholar 

  22. Bianchi PP, Pigazzi A, Choi GS. Clinical robotic surgery association fifth worldwide congress, Washington DC, 3–5 October 2013: robotic colorectal surgery. Ecancermedicalscience. 2014;8:385. Epub 2014/02/01.

    PubMed Central  PubMed  Google Scholar 

  23. Tzvetanov I, Giulianotti PC, Bejarano-Pineda L, Jeon H, Garcia-Roca R, Bianco F, et al. Robotic-assisted kidney transplantation. Surg Clin N Am. 2013;93(6):1309–23. Epub 2013/11/12.

    Article  PubMed  Google Scholar 

  24. Calatayud D, Milone L, Elli EF, Giulianotti PC. ICG-fluorescence identification of a small aberrant biliary canaliculus during robotic cholecystectomy. Liver Int. 2012;32(4):602. Epub 2012/02/02.

    Article  PubMed  Google Scholar 

  25. Buchs NC, Hagen ME, Pugin F, Volonte F, Bucher P, Schiffer E, et al. Intra-operative fluorescent cholangiography using indocyanin green during robotic single site cholecystectomy. Int J Med Robot. 2012;8(4):436–40. Epub 2012/06/01.

    Article  PubMed  Google Scholar 

  26. Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, et al. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2013;27(6):2156–62. Epub 2012/12/29.

    Article  PubMed  Google Scholar 

  27. Houston JP, Thompson AB, Gurfinkel M, Sevick-Muraca EM. Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging. Photochem Photobiol. 2003;77(4):420–30. Epub 2003/05/08.

    Article  CAS  PubMed  Google Scholar 

  28. Ishizawa T, Kaneko J, Inoue Y, Takemura N, Seyama Y, Aoki T, et al. Application of fluorescent cholangiography to single-incision laparoscopic cholecystectomy. Surg Endosc. 2011;25(8):2631–6. Epub 2011/03/23.

    Article  PubMed  Google Scholar 

  29. Kelder W, Nimura H, Takahashi N, Mitsumori N, van Dam GM, Yanaga K. Sentinel node mapping with indocyanine green (ICG) and infrared ray detection in early gastric cancer: an accurate method that enables a limited lymphadenectomy. Eur J Surg Oncol. 2010;36(6):552–8. Epub 2010/05/11.

    Article  CAS  PubMed  Google Scholar 

  30. Cahill RA, Anderson M, Wang LM, Lindsey I, Cunningham C, Mortensen NJ. Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc. 2012;26(1):197–204. Epub 2011/08/20.

    Article  PubMed  Google Scholar 

  31. Rossi EC, Jackson A, Ivanova A, Boggess JF. Detection of sentinel nodes for endometrial cancer with robotic assisted fluorescence imaging: cervical versus hysteroscopic injection. Int J Gynecol Cancer. 2013;23(9):1704–11. Epub 2013/11/02.

    Article  PubMed  Google Scholar 

  32. Holloway RW, Bravo RA, Rakowski JA, James JA, Jeppson CN, Ingersoll SB, et al. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol Oncol. 2012;126(1):25–9. Epub 2012/04/18.

    Article  PubMed  Google Scholar 

  33. Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg. 2010;97(9):1369–77. Epub 2010/07/14.

    Article  CAS  PubMed  Google Scholar 

  34. Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115(11):2491–504. Epub 2009/03/28.

    Article  PubMed  Google Scholar 

  35. Kokudo N, Ishizawa T. Clinical application of fluorescence imaging of liver cancer using indocyanine green. Liver Cancer. 2012;1(1):15–21. Epub 2012/06/01.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Manny TB, Pompeo AS, Hemal AK. Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience. Urology. 2013;82(3):738–42. Epub 2013/07/19.

    Article  PubMed  Google Scholar 

  37. Lee Z, Simhan J, Parker DC, Reilly C, Llukani E, Lee DI, et al. Novel use of indocyanine green for intraoperative, real-time localization of ureteral stenosis during robot-assisted ureteroureterostomy. Urology. 2013;82(3):729–33. Epub 2013/08/31.

    Article  PubMed  Google Scholar 

  38. Hassan M, Kerdok A, Engel A, Gersch K, Smith JM. Near infrared fluorescence imaging with ICG in TECAB surgery using the da Vinci Si surgical system in a canine model. J Card Surg. 2012;27(2):158–62. Epub 2012/03/01.

    Article  PubMed  Google Scholar 

  39. Schaafsma BE, Mieog JS, Hutteman M, van der Vorst JR, Kuppen PJ, Lowik CW, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104(3):323–32. Epub 2011/04/16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gioux S, Mazhar A, Cuccia DJ, Durkin AJ, Tromberg BJ, Frangioni JV. Three-dimensional surface profile intensity correction for spatially modulated imaging. J Biomed Opt. 2009;14(3):034045. Epub 2009/07/02.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Themelis G, Yoo JS, Soh KS, Schulz R, Ntziachristos V. Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt. 2009;14(6):064012. Epub 2010/01/12.

    Article  PubMed  Google Scholar 

  42. Metildi CA, Kaushal S, Luiken GA, Hoffman RM, Bouvet M. Advantages of fluorescence-guided laparoscopic surgery of pancreatic cancer labeled with fluorescent anti-carcinoembryonic antigen antibodies in an orthotopic mouse model. J Am Coll Surg. 2014;219:132–41. Epub 2014/04/29.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Metildi CA, Kaushal S, Hardamon CR, Snyder CS, Pu M, Messer KS, et al. Fluorescence-guided surgery allows for more complete resection of pancreatic cancer, resulting in longer disease-free survival compared with standard surgery in orthotopic mouse models. J Am Coll Surg. 2012;215(1):126–35. Discussion 35–6. Epub 2012/05/29.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Cristoforo Giulianotti MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giulianotti, P., Daskalaki, D., Bindal, V., Patton, K. (2015). Near-Infrared Imaging with Fluorescent Tracers in Robotic Surgery. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics