Skip to main content

Image Processing Technologies for Motion Compensation

  • Chapter
  • First Online:
Imaging and Visualization in The Modern Operating Room

Abstract

The impact of image processing in medical image analysis has increased enormously in recent years concurrently with the development of novel imaging modalities and new user interfaces, facilitating both image analysis and maximizing the use of information present within the images.

One of the most important imaging processing technologies addresses motion compensation. While images are assumed to contain information of a subject at one moment in time, measurements are, in general, severely hampered by the movement of the imaged organ. Specifically, physiological tissue motions give rise to strong artifacts, which vary in severity depending on the organ under investigation, the acquisition parameters (e.g., integration time and resolution), the imaging modality, and the ultimate imaging resolution, contributing in creating image distortion, blurring, and making image sequences highly unstable.

In this chapter, we present several solutions that we and other groups have recently proposed for intravital laser scanning optical imaging, which could also be easily extended to widefield fluorescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weigert R, Sramkova M, Parente L, Amornphimoltham P, Masedunskas A. Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol. 2010;133:481–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Pittet MJ, Weissleder R. Intravital imaging. Cell. 2011;147:983–91.

    Article  CAS  PubMed  Google Scholar 

  3. Bousso P, Moreau HD. Functional immunoimaging: the revolution continues. Nat Rev Immunol. 2012;12:858–64.

    Article  CAS  PubMed  Google Scholar 

  4. Stiller C, Konrad J. Estimating motion in image sequences. Signal Process Mag IEEE. 1999;16:70–91.

    Article  Google Scholar 

  5. Szeliski R. Image alignment and stitching: a tutorial. Found Trends Comput Graph Vis. 2006;2:1–104.

    Article  Google Scholar 

  6. Matsushita Y, Ofek E, Ge W, Tang X, Shum HY. Full-frame video stabilization with motion inpainting. IEEE Trans Pattern Anal Mach Intell. 2006;28:1150–63.

    Article  PubMed  Google Scholar 

  7. Soulet D, Paré A, Coste J, Lacroix S. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy. PLoS One. 2013;8:e53942.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2:1–36.

    Article  CAS  PubMed  Google Scholar 

  9. Crum WR, Hartkens T, Hill DL. Non-rigid image registration: theory and practice. Br J Radiol. 2004;77(2):S140–53.

    Article  PubMed  Google Scholar 

  10. Loewke KE, Camarillo DB, Piyawattanametha W, Mandella MJ, Contag CH, Thrun S, Salisbury JK. In vivo micro-image mosaicing. IEEE Trans Biomed Eng. 2011;58:159–71.

    Article  PubMed  Google Scholar 

  11. Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image. ACM Trans Graph. 2008;27:1–10.

    Google Scholar 

  12. Cho S, Lee S. Fast motion deblurring. ACM Trans Graph. 2009;28:1–8.

    Article  Google Scholar 

  13. Lee S, Vinegoni C, Sebas M, Weissleder R. Automated motion artifact removal for intravital microscopy, without a priori information. Sci Rep. 2014;4:4507.

    PubMed Central  PubMed  Google Scholar 

  14. Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3:84ra45.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Scott AD, Keegan J, Firmin DN. Motion in cardiovascular MR imaging. Radiology. 2009;250:331–51.

    Article  PubMed  Google Scholar 

  16. Tsao J, Kozerke S. MRI temporal acceleration techniques. J Magn Reson Imaging. 2012;36:543–60.

    Article  PubMed  Google Scholar 

  17. Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology. 1991;178:357–60.

    Article  CAS  PubMed  Google Scholar 

  18. Finn JP, Edelman RR. Black-blood and segmented k-space magnetic resonance angiography. Magn Reson Imaging Clin N Am. 1993;1:349–57.

    CAS  PubMed  Google Scholar 

  19. Vinegoni C, Lee S, Feruglio PF, Marzola P, Nahrendorf M, Weissleder R. Sequential average segmented microscopy for high signal-to-noise ratio motion-artifact-free in vivo heart imaging. Biomed Opt Express. 2013;4:2095–106.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lee S, Vinegoni C, Feruglio PF, Fexon L, Gorbatov R, Pivoravov M, Sbarbati A, Nahrendorf M, Weissleder R. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat Commun. 2012;3:1054.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Vinegoni C, Lee S, Gorbatov R, Weissleder R. Motion compensation using a suctioning stabilizer for intravital microscopy. IntraVital. 2012;1:115–121.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Scott NA, Knight JL, Bidstrup BP, Wolfenden H, Linacre RN, Maddem GJ. Systematic review of beating heart surgery with the Octopus Tissue Stabilizer. Eur J Cardiothorac Surg. 2002; 21:804–17.

    Google Scholar 

  23. Lee S, Nakamura Y, Yamane K, Toujo T, Takahashi S, Tanikawa Y, Takahashi H. Image stabilization for in vivo microscopy by high-speed visual feedback control. IEEE Trans on Robot. 2008;24:45–54.

    Article  CAS  Google Scholar 

  24. Lee S, Vinegoni C, Feruglio PF, Weissleder R. Improved intravital microscopy via synchronization of respiration and holder stabilization. J Biomed Opt. 2012;17:96018–1.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vinegoni PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vinegoni, C., Lee, S., Weissleder, R. (2015). Image Processing Technologies for Motion Compensation. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics