Clinical Milestones for Optical Imaging

Chapter

Abstract

My wife is a history teacher. George Santayana’s observation that “those who cannot remember the past are condemned to repeat it,” rings true in the field of optical imaging in the operating room. Much can be learned from historic difficulties in bringing optical imaging modalities successfully into the clinical workflow of the surgical suite. Few of the critical milestones in this field will be realized unless creativity is used to demonstrate that the failure to successfully translate optical and other imaging modalities can be avoided in this nascent area.

Keywords

Optical imaging Investigational new drug (IND) Ultrasound, photo acoustic imaging Magnetic resonance X-ray Imaging agents PET MRI A folic acid fluorescein isothiocyanate (FITC) EC17 

References

  1. 1.
  2. 2.
    Cheung G, et al. Recent advances in the diagnosis and treatment of bladder cancer. BMC Med. 2013;11:13.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Piazza C, et al. Narrow band imaging in endoscopic evaluation of the larynx. Curr Opin Otolaryngol Head Neck Surg. 2012;20(6):472–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Carnes J, et al. Optical molecular imaging in the gastrointestinal tract. Gastrointest Endosc Clin N Am. 2013;23:707–23.CrossRefGoogle Scholar
  5. 5.
    Mannath J, et al. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett’s esophagus: a meta-analysis. Endoscopy. 2010;2(5):351–9.CrossRefGoogle Scholar
  6. 6.
    Herr HW. Narrow-band imaging evaluation of bladder tumors. Curr Urol Rep. 2014;15(4):395. doi:10.1007/s11934-014-0395-4.CrossRefPubMedGoogle Scholar
  7. 7.
    Singh R, et al. Comparison of high-resolution magnification narrow-band imaging and white-light endoscopy in the prediction of histology in Barrett’s oesophagus. Scand J Gastroenterol. 2009;44:85–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Sharma P, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomized controlled trial. Gut. 2011;62:15–21.CrossRefGoogle Scholar
  9. 9.
    Kallaway C, et al. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagn Photodyn Ther. 2013;10:207–19.CrossRefGoogle Scholar
  10. 10.
    van den Berg NS, et al. Fluorescence guidance in urologic surgery. Curr Opin Urol. 2012;22:109–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Fox I, Brooker G, Heseltine D, Essex H, Wood E. New dyes for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation. Am J Physiol. 1956;187:599. http://www.accessdata.fda.gov/Scripts/cder/drugsatfda/index.cfmfuseaction=Search.Label_ApprovalHistory#apphist. Accessed 8 April 2014.Google Scholar
  12. 12.
  13. 13.
    Schaafsma, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104(3):323–32.Google Scholar
  14. 14.
    Flower R, Hochheimer B. Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J. 1976;138:33–42.PubMedGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
    Bredell MG. Sentinel lymph node mapping by indocyanin green fluorescence imaging in oropharyngeal cancer—preliminary experience. Head Neck Oncol. 2010;2:31.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Holloway RW, et al. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol Oncol. 2012;126(1):25–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Rossi EC, et al. Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study. Gynecol Oncol. 2012;124(1):78–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Hirche C, et al. Ultrastaging of colon cancer by sentinel node biopsy using fluorescence navigation with indocyanine green. Int J Colorectal Dis. 2012;27(3):319–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Noura S, et al. Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol. 2010;17(1):144–51.CrossRefPubMedGoogle Scholar
  22. 22.
    von Baeyer A. Uber ein neue Klasse von Farbstoffen. Ber Deut Chem Ges. 1871;4:555.CrossRefGoogle Scholar
  23. 23.
    Masannat YA, et al. DNA damaging effects of the dyes used in sentinel node biopsy: possible implications for clinical practice. J Surg Res. 2009;154(2):234–8.CrossRefPubMedGoogle Scholar
  24. 24.
    http://next.cancer.gov. Accessed 21 March 2014
  25. 25.
    Hyun H, et al. cGMP-compatible preparative scale synthesis of near-infrared fluorophores. Contrast Media Mol Imaging. 2012;7:(6):516–24.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    Nunn AD. The cost of developing imaging agents for routine clinical use. Invest Radiol. 2006;41(3):206–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Fowler JS, Wolf AP. 2-deoxy-2-[18F]fluoro-D-glucose for metabolic studies: current status. Int J Rad Appl Instrum A. 1986;37(8):663–8.CrossRefPubMedGoogle Scholar
  30. 30.
    van Dam GM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Personal Communication, Marty Low, OnTarget Laboratories. . 11 March, 2014Google Scholar
  32. 32.
  33. 33.
    Schnabel F, et al. A randomized prospective study of lumpectomy margin assessment with use of MarginProbe in patients with nonpalpable breast malignancies. Ann Surg Oncol. 2014. 21(5):1589–95.Google Scholar
  34. 34.
    Akcan M, et al. Chemical re-engineering of chlorotoxin improves bioconjugation properties for tumor imaging and targeted therapy. J Med Chem. 2011;54:782–7.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Personal communication Christian Behrenbruch, 31 March, 2014.Google Scholar
  36. 36.
    Vaupel P, et al. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 1991;51:3316–22.PubMedGoogle Scholar
  37. 37.
    Kelada OJ, Carlson DJ. Molecular imaging of tumor hypoxia with positron emission tomography. Radiat Res.2014;181(4):335–49.Google Scholar
  38. 38.
    Ziemer LS, et al. Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. Eur J Nucl Med Mol Imaging. 2003;30(2):259–66.CrossRefPubMedGoogle Scholar
  39. 39.
    Piert M, et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med. 2005;46(1):106–13.PubMedGoogle Scholar
  40. 40.
    Jerabek PA, et al. Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Int J Rad Appl Instrum A. 1986;37(7):599–605.CrossRefPubMedGoogle Scholar
  41. 41.
    van Loon J, et al. PET imaging of hypoxia using [18F]HX4: a phase I trial. Eur J Nucl Med Mol Imaging. 2010;37(9):1663–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Chung JK, et al. The effect of tumor size on F-18-labeled fluorodeoxyglucose and fluoroerythronitroimidazole uptake in a murine sarcoma model. Ann Nucl Med. 1999;13(5):303–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Lewis JS, et al. Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med. 1999;40(1):177–83.PubMedGoogle Scholar
  44. 44.
    Rischin D, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck: a phase III trial of the trans-Tasman radiation oncology group. J Clin Oncol. 2010;28(18):2989–95.CrossRefPubMedGoogle Scholar
  45. 45.
    Rischin D, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of trans-Tasman radiation oncology group study 98.02. J Clin Oncol. 2006;24(13):2098–104.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen Y. A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochem Biophys Res Commun. 2009;390(3):624–9.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Liu T, et al. A targeted low molecular weight near-infrared fluorescent probe for prostate cancer. Bioorg Med Chem Lett. 2010;20(23):7124–6.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Nakajima T, et al. Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA) positive tumors using the quenched humanized J591 antibody-indocyanine green (ICG) conjugate. Bioconjug Chem. 2011;22(8):1700–5.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Leung K. Quenched indocyanine green-anti-prostate-specific membrane antigen antibody J591. Molecular imaging and contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2011 Dec 08.Google Scholar
  50. 50.
    Zhang F, et al. An anti-PSMA bivalent immunotoxin exhibits specificity and efficacy for prostate cancer imaging and therapy. Adv Health Mater. 2013;2(5):736–44.CrossRefGoogle Scholar
  51. 51.
    Laydner H, et al. Robotic real-time near infrared targeted fluorescence imaging in a murine model of prostate cancer: a feasibility study. Urology. 2013;81(2):451–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Leung K. Cy7-(3S,7S)-26-Amino-5,13,20-trioxo-4,6,12,21-tetraazahexacosane-1,3,7,22-tetracarboxylic acid. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012 Dec 27.Google Scholar
  53. 53.
    Kelderhouse LE, et al. Development of tumor-targeted near infrared probes for fluorescence guided surgery. Bioconjug Chem. 2013;24(6):1075–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Shen D, et al. Evaluation of phage display discovered peptides as ligands for prostate-specific membrane antigen (PSMA). PLoS One. 2013;8(7):e68339.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Lütje S, et al. Dual-modality image-guided surgery of prostate cancer with a radiolabeled fluorescent anti-PSMA monoclonal antibody. J Nucl Med. 2014;55(6):995–1001.Google Scholar
  56. 56.
    Cytogen Corporation Annual Report, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Intuitive Surgical IncorporatedSunnyvaleUSA

Personalised recommendations