Skip to main content

Using Mathematical Modeling and Prior Knowledge for QbD in Freeze-Drying Processes

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 18))

Abstract

This chapter deals with the use of mathematical modeling to get quality-by-design in a freeze-drying process. The target is to identify the design space of the process, i.e., the values of the operating conditions that allow maintaining product temperature below the limit value during primary and secondary drying stages, with a sublimation rate compatible with the capacity of the condenser, avoiding choking flow in the duct connecting the chamber to the condenser, minimizing drying duration, and getting the target value of residual moisture in the final product. Mathematical models of product evolution in the vials during the whole process, and of the freeze-drying equipment, are presented, and the experimental investigation required to get the values of model parameters is discussed, pointing out that model accuracy and level of parameters uncertainty influence the quality of the results. Then, the use of mathematical models to calculate the design space for primary and secondary drying stages is presented, pointing out how the design space can be used to optimize the cycle and to analyze the effect of any deviation of process variables from their set-point values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams GDJ, Irons LI (1993) Some implications of structural collapse during freeze-drying using Erwinia caratovora Lasparaginase as a model. J Chem Technol Biotechnol 58:71–76

    Article  CAS  PubMed  Google Scholar 

  • Alexeenko AA, Ganguly A, Nail SL (2009) Computational analysis of fluid dynamics in pharmaceutical freeze-drying. J Pharm Sci 98:3483–3494

    Article  CAS  PubMed  Google Scholar 

  • Baldi G, Gasco MR, Pattarino F (1994) Statistical procedures for optimizing the freeze-drying of a model drug in ter-buthyl alcohol water mixtures. Eur J Pharm Biopharm 40:138–141

    CAS  Google Scholar 

  • Barresi AA, Fissore D (2011) Product quality control in freeze drying of pharmaceuticals. In: Tsotsas E, Mujumdar AS (eds) Modern drying technology—volume 3: product quality and formulation. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Google Scholar 

  • Barresi AA, Pisano R, Rasetto V, Fissore D, Marchisio DL (2010a) Model-based monitoring and control of industrial freeze-drying processes: effect of batch nonuniformity. Dry Technol 28:577–590

    Article  CAS  Google Scholar 

  • Barresi AA, Fissore D, Marchisio DL (2010b) Process analytical technology in industrial freeze-drying. In: Rey L, May JC (eds) Freeze-drying/lyophilization of pharmaceuticals and biological products, 3rd edn. Informa Healthcare, New York

    Google Scholar 

  • Batchelor GK (1965) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bellows RJ, King CJ (1972) Freeze-drying of aqueous solutions: maximum allowable operating temperature. Cryobiology 9:559–561

    Article  CAS  PubMed  Google Scholar 

  • Bomben JL, King CJ (1982) Heat and mass transport in the freezing of apple tissue. J Food Technol 17:615–632

    Article  Google Scholar 

  • Box GEP, Hunter WG, Hunter JS (1981) Statistics for experimenters. Wiley, New York

    Google Scholar 

  • Brülls M, Rasmuson A (2002) Heat transfer in vial lyophilization. Int J Pharm 246:1–16

    Article  PubMed  Google Scholar 

  • Chang BS, Fischer NL (1995) Development of an efficient single-step freeze-drying cycle for protein formulation. Pharm Res 12:831–837

    Article  CAS  PubMed  Google Scholar 

  • Chapman S, Cowling TG (1939) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  • Chouvenc P, Vessot S, Andrieu J, Vacus P (2004) Optimization of the freeze-drying cycle: a new model for pressure rise analysis. Dry Technol 22:1577–1601

    Article  Google Scholar 

  • Corbellini S, Parvis M, Vallan A (2010) In-process temperature mapping system for industrial freeze dryers. IEEE Trans Inst Meas 59:1134–1140

    Article  Google Scholar 

  • De Boer JH, Smilde AK, Doornbos DA (1988) Introduction of multi-criteria decision making in optimization procedures for pharmaceutical formulations. Acta Pharm Technol 34:140–143

    Google Scholar 

  • De Boer JH, Smilde AK, Doornbos DA (1991) Comparative evaluation of multi-criteria decision making and combined contour plots in optimization of directly compressed tablets. Eur J Pharm Biopharm 37:159–165

    Google Scholar 

  • Fissore D, Pisano R, Barresi AA (2011a) On the methods based on the pressure rise test for monitoring a freeze-drying process. Dry Technol 29:73–90

    Article  Google Scholar 

  • Fissore D, Pisano R, Barresi AA (2011b) Monitoring of the secondary drying in freeze-drying of pharmaceuticals. J Pharm Sci 100:732–742

    Article  CAS  PubMed  Google Scholar 

  • Fissore D, Barresi AA, Pisano R (2011c) Method for monitoring the secondary drying in a freeze-drying process. European Patent EP 2148158

    Google Scholar 

  • Fissore D, Pisano R, Barresi AA (2011d) Advanced approach to build the design space for the primary drying of a pharmaceutical freeze-drying process. J Pharm Sci 100:4922–4933

    Article  CAS  Google Scholar 

  • Fissore D, Pisano R, Barresi AA (2012) A model-based framework to optimize pharmaceuticals freeze-drying. Dry Technol, 30:946–958

    Google Scholar 

  • Franks F (1998) Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm 45:221–229

    Article  CAS  PubMed  Google Scholar 

  • Gan KH, Bruttini R, Crosser OK, Liapis AI (2004) Heating policies during the primary and secondary drying stages of the lyophilization process in vials: effects of the arrangement of vials in clusters of square and hexagonal arrays on trays. Dry Technol 22:1539–1575

    Article  Google Scholar 

  • Gan KH, Bruttini R, Crosser OK, Liapis AI (2005) Freeze-drying of pharmaceuticals in vials on trays: effects of drying chamber wall temperature and tray side on lyophilization performance. Int J Heat Mass Transfer 48:1675–1687

    Article  CAS  Google Scholar 

  • Ganguly A, Venkattraman A, Alexeenko AA (2010) 3D DSMC simulations of vapor/ice dynamics in a freeze-dryer condenser, AIP Conf. Proc., Vol. 1333, 27th International Symposium on Rarefied Gas Dynamics, Pacific Grove, California, 254–259.

    Google Scholar 

  • Gieseler H, Kessler WJ, Finson M, Davis SJ, Mulhall PA, Bons V, Debo DJ, Pikal MJ (2007) Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurement during freeze drying. J Pharm Sci 96:1776–1793

    Article  CAS  PubMed  Google Scholar 

  • Giordano A, Barresi AA, Fissore D (2011) On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process. J Pharm Sci 100:311–324

    Article  CAS  PubMed  Google Scholar 

  • Goff JA, Gratch S (1946) Low-pressure properties of water from—160 to 212 °F. Trans Am Soc Vent Eng 52:95–122

    Google Scholar 

  • Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11:471–477

    Article  CAS  PubMed  Google Scholar 

  • Hardwick LM, Paunicka C, Akers MJ (2008) Critical factors in the design and optimization of lyophilisation processes. Innovation Pharm Technol 26:70–74

    CAS  Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2009) ICH harmonised tripartite guideline. Pharmaceutical Development Q8 (R2)

    Google Scholar 

  • Kessler WJ, Davis SJ, Mulhall PA, Finson ML (2006) System for monitoring a drying process. United States Patent Application 0208191 A1

    Google Scholar 

  • Knudsen M (1909) Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Annal Physik 333:75–130

    Article  Google Scholar 

  • Kobayashi M (1984) Development of a new refrigeration system and optimum geometry of the vapor condenser for pharmaceutical freeze dryers. Proceedings 4th international drying symposium, Kyoto, 464–471.

    Google Scholar 

  • Kochs M, Korber CH, Heschel I, Nunner B (1991) The influence of the freezing process on vapour transport during sublimation in vacuum freeze- drying. Int J Heat Mass Transfer 34:2395–2408

    Article  CAS  Google Scholar 

  • Kochs M, Korber CH, Heschel I, Nunner B (1993) The influence of the freezing process on vapour transport during sublimation in vacuum freeze-drying of macroscopic samples. Int J Heat Mass Transfer 36:1727–1738

    Article  CAS  Google Scholar 

  • Kurz W, Fisher DJ (1992) Fundamentals of solidification, 3rd edn. Trans Tech Publications, Zurich

    Google Scholar 

  • Kuu WY, Nail SL, Sacha G (2009) Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying. J Pharm Sci 98:1136–1154

    Article  CAS  PubMed  Google Scholar 

  • Liapis AI, Bruttini R (1994) A theory for the primary and secondary drying stages of the freeze-drying of pharmaceutical crystalline and amorphous solutes: comparison between experimental data and theory. Sep Technol 4:144–155

    Article  CAS  Google Scholar 

  • Liapis AI, Bruttini R (1995) Freeze-drying of pharmaceutical crystalline and amorphous solutes in vials: dynamic multi-dimensional models of the primary and secondary drying stages and qualitative features of the moving interface. Dry Technol 13:43–72

    Article  CAS  Google Scholar 

  • Liapis AI, Sadikoglu H (1998) Dynamic pressure rise in the drying chamber as a remote sensing method for monitoring the temperature of the product during the primary drying stage of freeze-drying. Dry Technol 16:1153–1171

    Article  CAS  Google Scholar 

  • Liapis AI, Pikal MJ, Bruttini R (1996) Research and development needs and opportunities in freeze drying. Dry Technol 14:1265–1300

    Article  CAS  Google Scholar 

  • Lombraña JI, De Elvira C, Villaran MC (1997) Analysis of operating strategies in the production of special foods in vial by freeze-drying. Int J Food Sci Tech 32:107–115

    Article  Google Scholar 

  • Lunardini VJ (1981) Finite difference method for freezing and thawing in heat transfer in cold climates. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Mascarenhas WJ, Akay HU, Pikal MJ (1997) A computational model for finite element analysis of the freeze-drying process. Comput Method Appl M 148:105–124

    Article  Google Scholar 

  • Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Phil Trans Royal Soc Lon 170:231–256

    Article  Google Scholar 

  • Millman MJ, Liapis AI, Marchello JM (1985). An analysis of the lyophilization process using a sorption-sublimation model and various operational policies. AIChE J 31:1594–1604

    Article  CAS  Google Scholar 

  • Milton N, Pikal MJ, Roy ML, Nail SL (1997) Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilisation. PDA J Pharm Sci Technol 5:7–16

    Google Scholar 

  • Nail SL, Searles JA (2008) Elements of quality by design in development and scale-up of freeze-dried parenterals. Biopharm Int 21:44–52

    CAS  Google Scholar 

  • Nakagawa K, Hottot A, Vessot S, Andrieu J (2007) Modeling of the freezing step during freeze-drying of drugs in vials. AIChE J 53:1362–1372

    Article  CAS  Google Scholar 

  • Oetjen GW (1997) Gefriertrocknen. VCH, Weinheim

    Book  Google Scholar 

  • Oetjen GW (1999) Freeze-drying. Wiley-VCH. Weinheim

    Book  Google Scholar 

  • Oetjen GW, Haseley P (2004) Freeze-drying, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Patel SM, Swetaprovo C, Pikal MJ (2010). Choked flow and importance of Mach I in freeze-drying process design. Chem Eng Sci 65:5716–5727

    Article  CAS  Google Scholar 

  • Petitti M, Barresi AA, Marchisio DL (2013) CFD modelling of condensers for freeze-drying processes. Sādhanā—Acad Proc Eng Sci 38:1219–1239

    Google Scholar 

  • Pikal MJ (1985) Use of laboratory data in freeze-drying process design: heat and mass transfer coefficients and the computer simulation of freeze-drying. J Parenter Sci Technol 39:115–139

    CAS  PubMed  Google Scholar 

  • Pikal MJ (1994) Freeze-drying of proteins: process, formulation, and stability. ACS Symp Ser 567:120–133

    Article  CAS  Google Scholar 

  • Pikal MJ (2000) Heat and mass transfer in low pressure gases: applications to freeze-drying. In: Amidon GL, Lee PI, Topp EM (eds) Transport processes in pharmaceutical systems. Marcel Dekker, New York

    Google Scholar 

  • Pikal MJ (2006) Freeze drying. In: Swarbrick J (ed) Encyclopedia of pharmaceutical technology, 5th edn. Informa Healthcare, New York

    Google Scholar 

  • Pikal MJ, Shah S, Roy ML, Putman R (1980) The secondary drying stage of freeze drying: drying kinetics as a function of temperature and pressure. Int J Pharm 60:203–217

    Article  Google Scholar 

  • Pikal MJ, Roy ML, Shah S (1984) Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci 73:1224–1237

    Article  CAS  PubMed  Google Scholar 

  • Pisano R, Fissore D, Velardi SA, Barresi AA (2010) In-line optimization and control of an industrial freeze-drying process for pharmaceuticals. J Pharm Sci 99:4691–4709

    Article  CAS  PubMed  Google Scholar 

  • Pisano R, Fissore D, Barresi AA (2011a) Heat transfer in freeze-drying apparatus. In: dos Santos Bernardes MA (ed) Developments in heat transfer—Book 1. In Tech—Open Access Publisher, Rijeka

    Google Scholar 

  • Pisano R, Fissore D, Barresi AA (2011b) Freeze-drying cycle optimization using model predictive control techniques. Ind Eng Chem Res 50:7363–7379

    Article  CAS  Google Scholar 

  • Pisano R, Fissore D, Barresi AA (2012) Quality by design in the secondary drying step of a freeze-drying process. Dry Technol, submitted 30:1307–1316

    Google Scholar 

  • Rasetto V, Marchisio DL, Fissore D, Barresi AA (2008) Model-based monitoring of a non-uniform batch in a freeze-drying process. In: Braunschweig B, Joulia X Proceedings of 18th European symposium on computer aided process engineering—ESCAPE 18, Lyon. Computer Aided Chemical Engineering Series, vol. 24. Elsevier B.V. Ltd, Paper 210. CD Edition

    Google Scholar 

  • Rasetto V, Marchisio DL, Barresi AA (2009) Analysis of the fluid dynamics of the drying chamber to evaluate the effect of pressure and composition gradients on the sensor response used for monitoring the freeze-drying process. In: Proceedings of the European drying conference AFSIA 2009, Lyon. cahier de l’AFSIA 23, 110–111

    Google Scholar 

  • Rasetto V, Marchisio DL, Fissore D, Barresi AA (2010) On the use of a dual-scale model to improve understanding of a pharmaceutical freeze-drying process. J Pharm Sci 99:4337–4350

    Article  CAS  PubMed  Google Scholar 

  • Reid DS (1984) Cryomicroscope studies of the freezing of model solutions of cryobiological interest. Cryobiology 21:60–67

    Article  CAS  Google Scholar 

  • Sadikoglu H, Liapis, AI (1997) Mathematical modelling of the primary and secondary drying stages of bulk solution freeze-drying in trays: parameter estimation and model discrimination by comparison of theoretical results with experimental data. Dry Technol 15:791–810

    Article  CAS  Google Scholar 

  • Sane SV, Hsu CC (2007) Strategies for successful lyophilization process scale-up. Am Pharm Rev 41:132–136

    Google Scholar 

  • Sane SV, Hsu CC (2008) Mathematical model for a large-scale freeze-drying process: a tool for efficient process development & routine production. In: Proceedings of 16th international drying symposium (IDS 2008), Hyderabad, 680–688

    Google Scholar 

  • Searles J (2004) Observation and implications of sonic water vapour flow during freeze-drying. Am Pharm Rev 7:58–69

    CAS  Google Scholar 

  • Searles JA, Carpenter JF, Randolph TW (2001a) The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci 90:860–871

    Article  CAS  PubMed  Google Scholar 

  • Searles JA, Carpenter JF, Randolph TW (2001b) Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg’ in pharmaceutical lyophilization. J Pharm Sci 90:872–887

    Article  CAS  PubMed  Google Scholar 

  • Sheehan P, Liapis AI (1998) Modeling of the primary and secondary drying stages of the freeze-drying of pharmaceutical product in vials: numerical results obtained from the solution of a dynamic and spatially multi-dimensional lophilisation model for different operational policies. Biotechnol Bioeng 60:712–728

    Article  CAS  PubMed  Google Scholar 

  • Tang MM, Liapis AI, Marchello JM (1986) A multi-dimensional model describing the lyophilization of a pharmaceutical product in a vial. In: Mujumadar AS (ed) Proceedings of the 5th international drying symposium. Hemisphere Publishing Company, New York, 57–64

    Google Scholar 

  • Tsourouflis S, Flink JM, Karel M (1976) Loss of structure in freeze-dried carbohydrates solutions: effect of temperature, moisture content and composition. J Sci Food Agric 27:509–519

    Article  CAS  Google Scholar 

  • Vallan A (2007) A measurement system for lyophilization process monitoring. Proceedings of instrumentation and measurement technology conference—IMTC 2007, Warsaw. Piscataway: IEEE. doi:10.1109/IMTC.2007.379000

    Google Scholar 

  • Vallan A, Corbellini S, Parvis M (2005) A Plug & Play architecture for low-power measurement systems. In: Proceedings of instrumentation and measurement technology conference—IMTC 2005, Ottawa, Vol. 1, 565–569

    Google Scholar 

  • Velardi SA, Barresi AA (2008) Development of simplified models for the freeze-drying process and investigation of the optimal operating conditions. Chem Eng Res Des 86:9–22

    Article  CAS  Google Scholar 

  • Velardi SA, Barresi AA (2011) On the use of a bi-dimensional model to investigate a vial freeze-drying process. In Chemical engineering greetings to prof. Sauro Pierucci. Aidic Servizi srl, Milano, 319–330

    Google Scholar 

  • Velardi SA, Rasetto V, Barresi AA (2008) Dynamic parameters estimation method: advanced manometric temperature measurement approach for freeze-drying monitoring of pharmaceutical solutions. Ind Eng Chem Res 47:8445–8457

    Article  CAS  Google Scholar 

  • Wang DQ, Hey JM, Nail SL (2004) Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase. J Pharm Sci 93:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Woinet B, Andrieu J, Laurent M, Min SG (1998) Experimental and theoretical study of model food freezing. Part II: characterization and modeling of the ice crystal size. J Food Eng 35:395–407

    Article  Google Scholar 

  • Ybema H, Kolkman-Roodbeen L, te Booy MPWM, Vromans H (1995) Vial lyophilization: calculations on rate limiting during primary drying. Pharm Res 12:1260–1263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The contribution of Daniele Marchisio (Politecnico di Torino) and the support of Telstar Technologies S.L. (Spain) for the CFD study of the freeze-dryer is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Fissore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fissore, D., Pisano, R., Barresi, A. (2015). Using Mathematical Modeling and Prior Knowledge for QbD in Freeze-Drying Processes. In: Jameel, F., Hershenson, S., Khan, M., Martin-Moe, S. (eds) Quality by Design for Biopharmaceutical Drug Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 18. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2316-8_23

Download citation

Publish with us

Policies and ethics