Skip to main content

An Introduction to Neuroscientific Methods: Single-cell Recordings

  • Chapter
  • First Online:
Book cover An Introduction to Model-Based Cognitive Neuroscience

Abstract

This chapter describes the role of single-cell recordings in understanding the mechanisms underlying human cognition. Cognition is a function of the brain, a complex computational network, whose most elementary nodes are made up out of individual neurons. These neurons encode information and influence each other through a dynamically changing pattern of action potentials. For this reason, the activity of neurons in the awake, behaving brain constitutes the most fundamental form of neural data for cognitive neuroscience. This chapter discusses a number of technical issues and challenges of single-cell neurophysiology using a recent project of the authors as an example. We discuss issues such as the choice of an appropriate animal model, the role of psychophysics, technical challenges surrounding the simultaneous recording of multiple neurons, and various methods for perturbation experiments. The chapter closes with a consideration of the challenge that the brain’s complexity poses for fully understanding any realistic nervous circuit, and of the importance of conceptual insights and mathematical models in the interpretation of single-cell recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teller DY (1984) Linking propositions. Vision Res 24(10):1233–1246

    CAS  PubMed  Google Scholar 

  2. Schall JD (2004) On building a bridge between brain and behavior. Ann Rev Psychol 55:23–50

    Google Scholar 

  3. Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the physiology of perception. Ann Rev Neurosci 21:227–277

    CAS  PubMed  Google Scholar 

  4. Adrian ED (1928) The basis of sensation: the action of the sense organs. W. W. Norton, New York

    Google Scholar 

  5. Hartline HK, Milne LJ, Wagman IH (1947) Fluctuation of response of single visual sense cells. Fed Proc 6(1 Pt 2):124

    CAS  PubMed  Google Scholar 

  6. Barlow HB (1995) The neuron doctrine in perception. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 415–435

    Google Scholar 

  7. Mountcastle VB, Talbot WH, Darian-Smith I, Kornhuber HH (1967) Neural basis of the sense of flutter-vibration. Science 155(762):597–600

    CAS  PubMed  Google Scholar 

  8. Rieke F, Warland DK, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  9. Koch C (1999) Biophysics of computation: information processing in single neurons. In: Computational Neuroscience Series, Stryker M (ed) Oxford University Press, Oxford

    Google Scholar 

  10. Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11(7):474–489

    CAS  PubMed  Google Scholar 

  11. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13(1):334–350

    CAS  PubMed  Google Scholar 

  12. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–3896

    CAS  PubMed  Google Scholar 

  13. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci 18:555–586

    CAS  PubMed  Google Scholar 

  14. London M, Roth A, Beeren L, Hausser M, Latham PE (2010) Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466(7302):123–127

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Werner G, Mountcastle VB (1965) Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relations, weber functions, and information transmission. J Neurophysiol 28:359–397.

    CAS  PubMed  Google Scholar 

  16. de Lafuente V Romo R (2005) Neuronal correlates of subjective sensory experience. Nature Neuroscience. [Research Support, Non-U.S. Gov't]. 8(12):1698–1703

    PubMed  Google Scholar 

  17. Newsome WT, Britten KH, Salzman CD, Movshon JA (1990) Neuronal mechanisms of motion perception. Cold Spring Harb Symp Quant Biol 55:697–705

    CAS  PubMed  Google Scholar 

  18. Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86(4):1916–1936

    CAS  PubMed  Google Scholar 

  19. Vallbo AB, Johansson RS (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3(1):3–14

    CAS  PubMed  Google Scholar 

  20. Houweling AR, Brecht M (2008) Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451(7174):65–68

    CAS  PubMed  Google Scholar 

  21. Li CY, Poo MM, Dan Y.(2009) Burst spiking of a single cortical neuron modifies global brain state. Science 324(5927):643–646

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Crist RE, Lebedev MA (2007) Multielectrode recording in behaving monkeys. In: Nicolelis MAL (ed) Methods for neural ensemble recordings. CRC, Boca Raton

    Google Scholar 

  23. Evarts EV (1966) Pyramidal tract activity associated with a conditioned hand movement in the monkey. J Neurophysiol 29(6):1011–1027

    CAS  PubMed  Google Scholar 

  24. Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31(1):14–27

    CAS  PubMed  Google Scholar 

  25. Mountcastle VB, Talbot WH, Sakata H, Hyvarinen J (1969) Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J Neurophysiol 32(3):452–484

    CAS  PubMed  Google Scholar 

  26. Wurtz RH (1968) Visual cortex neurons: response to stimuli during rapid eye movements. Science 162(858):1148–1150

    CAS  PubMed  Google Scholar 

  27. Kepecs A, Uchida N, Zariwala HA, Mainen ZF (2008) Neural correlates, computation and behavioural impact of decision confidence. Nature 455(7210):227–231

    CAS  PubMed  Google Scholar 

  28. Ogawa M, van der Meer MA, Esber GR, Cerri DH, Stalnaker TA, Schoenbaum G (2013) Risk-responsive orbitofrontal neurons track acquired salience. Neuron 77(2):251–258

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC (2006) Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442(7105):925–958

    CAS  PubMed  Google Scholar 

  30. Denk W, Briggman KL, Helmstaedter M.(2012) Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat Rev Neurosci.13(5):351–358

    CAS  PubMed  Google Scholar 

  31. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    CAS  PubMed  Google Scholar 

  32. Wise SP (2008) Forward frontal fields: phylogeny and fundamental function. Trends Neurosci 31(12):599–608

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Tanji J, Hoshi E (2008) Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev 88(1):37–57

    PubMed  Google Scholar 

  34. Fuster JM (2008) The prefrontal cortex, 4th edn. Academic Press, Amsterdam

    Google Scholar 

  35. Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146(1–2):3–17

    PubMed  Google Scholar 

  36. Sescousse G, Redoute J, Dreher JC (2010) The architecture of reward value coding in the human orbitofrontal cortex. J Neurosci 30(39):13095–13104

    CAS  PubMed  Google Scholar 

  37. O'Neill M, Schultz W (2010) Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68(4):789–800

    Google Scholar 

  38. Tobler PN, O'Doherty JP, Dolan RJ, Schultz W (2007) Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. J Neurophysiol 97(2):1621–1632

    PubMed Central  PubMed  Google Scholar 

  39. Moore EF (1956) Gedanken-experiments on sequential machines. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton pp. 129–153

    Google Scholar 

  40. Ridley RM, Haystead TA, Baker HF (1981 Mar) An analysis of visual object reversal learning in the marmoset after amphetamine and haloperidol. Pharmacol Biochem Behav 14(3):345–351

    CAS  PubMed  Google Scholar 

  41. Kruzich PJ, Grandy DK (2004) Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neurosci 5:12

    PubMed Central  PubMed  Google Scholar 

  42. Mehta MA, Swainson R, Ogilvie AD, Sahakian BJ, Robbins TW (2001) Improved short-term spatial memory but impaired following the dopamine D-2 agonist bromocriptine reversal learning in human volunteers. Psychopharmacology 159(1):10–20.

    CAS  PubMed  Google Scholar 

  43. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488(7410):172–177

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Plassmann H, O'Doherty J, Shiv B, Rangel A (2008) Marketing actions can modulate neural representations of experienced pleasantness. Proc Natl Acad Sci U S A 105(3):1050–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Cavanaugh J, Monosov IE, McAlonan K, Berman R, Smith MK, Cao V et al (2012) Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76(5):901–907

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Nauhaus I, Nielsen KJ, Disney AA, Callaway EM (2012) Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat Neurosci 15(12):1683–1690

    CAS  PubMed  Google Scholar 

  47. Han X, Qian X, Bernstein JG, Zhou HH, Franzesi GT, Stern P et al (2009) Millisecondtimescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62(2):191–198

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Ozden I, Wang J, Lu Y, May T, Lee J, Goo W et al (2013) A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J Neurosci Methods 219:142–154

    PubMed Central  PubMed  Google Scholar 

  49. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O et al (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14(3):387–397

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Passingham R (2008) What is special about the human brain? Oxford University Press, Oxford

    Google Scholar 

  51. Suthana N, Fried I (2012 Aug) Percepts to recollections: insights from single neuron recordings in the human brain. Trends Cogn Sci 16(8):427–436

    PubMed  Google Scholar 

  52. Tankus A, Fried I, Shoham S (2012) Structured neuronal encoding and decoding of human speech features. Nat Commun 3:1015

    PubMed  Google Scholar 

  53. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435(7045):1102–1107

    CAS  PubMed  Google Scholar 

  54. Cerf M, Thiruvengadam N, Mormann F, Kraskov A, Quiroga RQ, Koch C et al (2010) On-line, voluntary control of human temporal lobe neurons. Nature 467(7319):1104–1108

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Burbaud P, Clair AH, Langbour N, Fernandez-Vidal S, Goillandeau M, Michelet T et al (2013) Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder. Brain 136(Pt 1):304–317

    PubMed  Google Scholar 

  56. Gold JI, Shadlen MN (2007) The neural basis of decision making. Ann rev neurosci 30:535–574

    CAS  PubMed  Google Scholar 

  57. Rangel A, Camerer C, Montague PR (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9(7):545–556

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–419

    CAS  PubMed  Google Scholar 

  59. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat rev Neurosci 7(6):464–476

    CAS  PubMed  Google Scholar 

  60. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711

    CAS  PubMed  Google Scholar 

  61. Vickery TJ, Chun MM, Lee D (2011) Ubiquity and specificity of reinforcement signals throughout the human brain. Neuron 72(1):166–177

    CAS  PubMed  Google Scholar 

  62. Padoa-Schioppa C (2011) Neurobiology of economic choice: a good-based model. Annu Rev Neurosci 34:333–359

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Kable JW, Glimcher PW (2009) The neurobiology of decision: consensus and controversy. Neuron 63(6):733–745

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Plassmann H, O'Doherty J, Rangel A (2007) Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J Neurosci 27(37):9984–9988

    CAS  PubMed  Google Scholar 

  65. Plassmann H, O'Doherty JP, Rangel A (2010) Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J Neurosci 30(32):10799–10808

    CAS  PubMed  Google Scholar 

  66. Bermudez MA, Schultz W (2010) Reward magnitude coding in primate amygdala neurons. J Neurophysiol 104(6):3424–3432

    PubMed Central  PubMed  Google Scholar 

  67. Grabenhorst F, Hernadi I, Schultz W (2012) Prediction of economic choice by primate amygdala neurons. Proc Natl Acad Sci U S A 109(46):18950–18955

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Lau B, Glimcher PW (2007) Action and outcome encoding in the primate caudate nucleus. J Neurosci 27(52):14502–14514

    CAS  PubMed  Google Scholar 

  69. Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310(5752):1337–1340

    CAS  PubMed  Google Scholar 

  70. Kim S, Hwang J, Lee D (2008) Prefrontal coding of temporally discounted values during intertemporal choice. Neuron 59(1):161–172

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Hernandez A, Nacher V, Luna R, Zainos A, Lemus L, Alvarez M et al (2010) Decoding a perceptual decision process across cortex. Neuron 66(2):300–314

    CAS  PubMed  Google Scholar 

  72. Seo H, Barraclough DJ, Lee D (2007) Dynamic signals related to choices and outcomes in the dorsolateral prefrontal cortex. Cereb Cortex 17(suppl 1):i110–i117

    Google Scholar 

  73. So NY, Stuphorn V (2010) Supplementary eye field encodes option and action value for saccades with variable reward. J Neurophysiol 104(5):2634–2653

    PubMed Central  PubMed  Google Scholar 

  74. Cisek P (2012) Making decisions through a distributed consensus. Curr Opin Neurobiol 22(6):927–936

    CAS  PubMed  Google Scholar 

  75. Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Ann Rev Neurosci 33:269–298

    CAS  PubMed  Google Scholar 

  76. Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400(6741):233–238

    CAS  PubMed  Google Scholar 

  77. Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the representation of value in the parietal cortex. Science 304(5678):1782–1787

    CAS  PubMed  Google Scholar 

  78. Shadlen MN, Kiani R, Hanks TD, Churchland AK (2008) Neurobiology of decision making, an intentional framework. In: Engel C, Singer W (eds) Better than conscious? MIT Press, Cambridge, pp. 71–101

    Google Scholar 

  79. Kingdom FAA, Prins N (2010) Psychophysics: a practical introduction. Academic Press, Amsterdam

    Google Scholar 

  80. Maloney LT, Yang JN (2003) Maximum likelihood difference scaling. J Vis 3(8):573–585

    PubMed  Google Scholar 

  81. Fechner GT (1876) Vorschule der Aesthetik. Breitkopf & Haerterl, Leibzig

    Google Scholar 

  82. Gescheider GA (1997) Psychophysics: the fundamentals. 3rd edn. Lawrence Erlbaum Assoc., Mahwah

    Google Scholar 

  83. Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34:273–286

    Google Scholar 

  84. McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontier in econometrics. Academic Press, NewYork, pp. 105–142

    Google Scholar 

  85. Glimcher P (2011) Foundations of neuroeconomic analysis. Oxford University Press, Oxford

    Google Scholar 

  86. Stevens SS (1951) Handbook of experimental psychology. Wiley, NewYork

    Google Scholar 

  87. Einevoll GT, Franke F, Hagen E, Pouzat C, Harris KD (2012) Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Curr Opin Neurobiol 22(1):11–17

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Hernandez A, Nacher V, Luna R, Alvarez M, Zainos A, Cordero S et al (2008) Procedure for recording the simultaneous activity of single neurons distributed across cortical areas during sensory discrimination. Proc Natl Acad Sci U S A 105(43):16785–16790

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Kipke DR, Shain W, Buzsaki G, Fetz E, Henderson JM, Hetke JF et al (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Du J, Riedel-Kruse IH, Nawroth JC, Roukes ML, Laurent G, Masmanidis SC (2009) High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays. J Neurophysiol 101(3):1671–1678

    PubMed  Google Scholar 

  91. Kelly RC, Smith MA, Samonds JM, Kohn A, Bonds AB, Movshon JA et al (2007) Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J Neurosci 27(2):261–264

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD et al (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci U S A 100(19):11041–11046

    PubMed Central  CAS  PubMed  Google Scholar 

  93. McNaughton BL, O'Keefe J, Barnes CA (1983) The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 8(4):391–397

    CAS  PubMed  Google Scholar 

  94. Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    CAS  PubMed  Google Scholar 

  95. Miller EK, Wilson MA (2008) All my circuits: using multiple electrodes to understand functioning neural networks. Neuron 60(3):483–488

    CAS  PubMed  Google Scholar 

  96. Fujisawa S, Amarasingham A, Harrison MT, Buzsaki G (2008) Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat neurosci 11(7):823–833

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Seymour JP, Kipke DR (2007) Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25):3594–3607

    CAS  PubMed  Google Scholar 

  98. Salazar RF, Dotson NM, Bressler SL, Gray CM (2012) Content-specific fronto-parietal synchronization during visual working memory. Science 338(6110):1097–1100

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Hoffman KL, McNaughton BL (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297(5589):2070–2073

    CAS  PubMed  Google Scholar 

  100. Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679

    CAS  PubMed  Google Scholar 

  101. Cisek P (2012) Making decisions through a distributed consensus. Curr Opin Neurobiol 22(6):927–936

    CAS  PubMed  Google Scholar 

  102. Huerta MF, Kaas JH (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330

    CAS  PubMed  Google Scholar 

  103. Ghashghaei HT, Hilgetag CC, Barbas H (2007 Feb 1) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34(3):905–923

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Lau B, Glimcher PW (2008) Value representations in the primate striatum during matching behavior. Neuron 58(3):451–463

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Shook BL, Schlag-Rey M, Schlag J (1991) Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J Comp Neurol 307(4):562–583

    CAS  PubMed  Google Scholar 

  106. Coe B, Tomihara K, Matsuzawa M, Hikosaka O (2002) Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J Neurosci 22(12):5081–5090

    CAS  PubMed  Google Scholar 

  107. So NY, Stuphorn V (2010) Supplementary eye field encodes option and action value for saccades with variable reward. J Neurophysiol 104(5):2634–2653

    PubMed Central  PubMed  Google Scholar 

  108. So NY, Stuphorn V (2012) Supplementary eye field encodes reward prediction error. J Neurosci 32(9):2950–2963

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Barlow HB, Levick WR, Yoon M (1971) Responses to single quanta of light in retinal ganglion cells of the cat. Vision Res Suppl 3:87–101

    Google Scholar 

  110. Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76(6):4040–4055

    CAS  PubMed  Google Scholar 

  111. Churchland MM, Yu BM, Sahani M, Shenoy KV (2007) Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr Opin Neurobiol 17(5):609–618

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley, NewYork

    Google Scholar 

  113. Broome BM, Jayaraman V, Laurent G (2006) Encoding and decoding of overlapping odor sequences. Neuron 51(4):467–482

    CAS  PubMed  Google Scholar 

  114. Briggman KL, Abarbanel HD, Kristan WB, Jr (2005) Optical imaging of neuronal populations during decision-making. Science 307(5711):896–901

    Google Scholar 

  115. Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484(7392):62–68

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M (2009) Gaussianprocess factor analysis for low-dimensional single-trial analysis of neural population activity. J Neurophysiol 102(1):614–635

    PubMed Central  PubMed  Google Scholar 

  117. Lomber SG, Payne BR, Horel JA (1999) The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. J Neurosci Methods 86(2):179–194

    CAS  PubMed  Google Scholar 

  118. Noonan MP, Walton ME, Behrens TE, Sallet J, Buckley MJ, Rushworth MF (2010) Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. P Natl Acad Sci USA 107(47):20547–20552

    CAS  Google Scholar 

  119. Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R (2012)The brain activity map project and the challenge of functional connectomics. Neuron 74(6):970–974.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Koch C (2012) Systems biology. Modular biological complexity. Science 337(6094):531–532

    CAS  PubMed  Google Scholar 

  121. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(Pt 4):701–722

    PubMed  Google Scholar 

  122. Kim TI, McCall JG, Jung YH, Huang X, Siuda ER, Li Y et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129):211–216

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Abbott A (2013) Neuroscience: solving the brain. Nature 499(7458):272–274

    CAS  PubMed  Google Scholar 

  124. Kim TI et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211–216

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Alivisatos AP et al (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7:1850–1866

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Nielsen, D. Sasikumar and E. Emeric for comments on the manuscript. This work was supported by the National Eye Institute through grant R01-EY019039 to VS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Stuphorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stuphorn, V., Chen, X. (2015). An Introduction to Neuroscientific Methods: Single-cell Recordings. In: Forstmann, B., Wagenmakers, EJ. (eds) An Introduction to Model-Based Cognitive Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2236-9_6

Download citation

Publish with us

Policies and ethics