Skip to main content

An Introduction to Human Brain Anatomy

  • Chapter
  • First Online:
An Introduction to Model-Based Cognitive Neuroscience

Abstract

This tutorial chapter provides an overview of the human brain anatomy. Knowledge of brain anatomy is fundamental to our understanding of cognitive processes in health and disease; moreover, anatomical constraints are vital for neurocomputational models and can be important for psychological theorizing as well. The main challenge in understanding brain anatomy is to integrate the different levels of description ranging from molecules to macroscopic brain networks. This chapter contains three main sections. The first section provides a brief introduction to the neuroanatomical nomenclature. The second section provides an introduction to the different levels of brain anatomy and describes commonly used atlases for the visualization of functional imaging data. The third section provides a concrete example of how human brain structure relates to performance.

If you want to understand function, study structure.

(Swaab [75])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkemade A, Keuken MC, Forstmann BU (2013) A perspective on terra incognita: uncovering the neuroanatomy of the human subcortex. Front Neuroanat 3:7–40

    Google Scholar 

  2. Amunts K, Zilles K (2012) Architecture and organizational principles of Broca’s region. Trend Cogn Sci 16(8):418–426

    Article  Google Scholar 

  3. Anwander A, Tittgemeyer M, Cramon von D, Friederici A, Knosche T (2006) Connectivitybased parcellation of Broca's area. Cereb Cortex 17(4):816–825

    Article  PubMed  Google Scholar 

  4. Bazin P-L, Weiss M, Dinse J, Schäfer A, Trampel R, Turner R (2013) A computational framework for ultra-high resolution cortical segmentation at 7 Tesla. Neuroimage 2:201–209

    Google Scholar 

  5. Behrens T, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott C, Boulby PA et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757

    Article  CAS  PubMed  Google Scholar 

  6. Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, Castellanos FX (1998) Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 50(4):1087–1093

    Article  CAS  PubMed  Google Scholar 

  7. Bogacz R, Wagenmakers E-J, Forstmann BU, Nieuwenhuis S (2010) The neural basis of the speed-accuracy tradeoff. Trend Neurosci 33(1):10–16

    Article  CAS  PubMed  Google Scholar 

  8. Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin

    Book  Google Scholar 

  9. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt aufgrund des Zellenbaues. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  10. Brown SD, Heathcote A (2008) The simplest complete model of choice response time: linear ballistic accumulation. Cogn Psychol 57(3):153–178

    Article  PubMed  Google Scholar 

  11. Burdach KF (1819) Vom Baue und Leben des Gehirns. Dyk’schen Buchhandlung, Leipzig, pp 1–285

    Google Scholar 

  12. Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29(4):1092–1105

    Article  PubMed  Google Scholar 

  13. Campbell AW (1905) Histological studies on the localisation of cerebral function. Cambridge University Press, Cambridge

    Google Scholar 

  14. Catani M, Ffytche DH (2010) On the study of the nervous system and behaviour. Cortex 46(1):106–109

    Article  PubMed  Google Scholar 

  15. Catani M, de Schotten MT (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44(8):1105–1132

    Article  PubMed  Google Scholar 

  16. Catani M, de Schotten MT (2012) Atlas of human brain connections, 1st edn. Oxford University Press, Oxford, pp 1–515

    Book  Google Scholar 

  17. Cha Y-K (1991) Effect of the global system on language instruction, 1850–1986. Sociol Educ 64(1):19–32

    Article  Google Scholar 

  18. Cho ZH, Min HK, Oh SH, Han JY, Park CW, Chi JG et al (2010) Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg 113:1–9

    Article  Google Scholar 

  19. Choi H-J, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Compar Neurol 495(1):53–69

    Article  Google Scholar 

  20. Derrfuss J, Mar RA (2009) Lost in localization: the need for a universal coordinate database. Neuroimage 48(1):1–7

    Article  PubMed  Google Scholar 

  21. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

    Article  PubMed  Google Scholar 

  22. Devlin JT, Sillery EL, Hall DA, Hobden P, Behrens TEJ, Nunes RG et al (2006) Reliable identification of the auditory thalamus using multi-modal structural analyses. Neuroimage 30(4):1112–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130(5):1432–1441

    Article  CAS  PubMed  Google Scholar 

  24. Dunnen DWF, Staal MJ (2005) Anatomical alterations of the subthalamic nucleus in relation to age: a postmortem study. Mov Disord 20(7):893–898

    Article  Google Scholar 

  25. Duvernoy MH (1999) The human brain, 2nd edn. Springer, Wien

    Book  Google Scholar 

  26. Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien

    Google Scholar 

  27. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005a) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    Google Scholar 

  28. Eickhoff S, Walters NB, Schleicher A, Kril J, Egan GF, Zilles K et al (2005b) High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp 24(3):206–215

    Google Scholar 

  29. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62(2):911–922

    Google Scholar 

  30. Federative Committee on Anatomical Terminology (1998) Terminologia Anatomica. (Federative Committee on Anatomical Terminology, Ed.). Thieme, NewYork, pp 1–292

    Google Scholar 

  31. Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig, pp 1–121

    Google Scholar 

  32. Fodor J (1999) Diary. London Rev Books 21(9):68–69. http://www.lrb.co.uk/v21/n19/jerryfodor/diary. Accessed 1 April 2013

  33. Forstmann BU, Anwander A, Schafer A, Neumann J, Brown S, Wagenmakers E-J et al (2010) Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proc Natl Acad Sci U S A 107(36):15916–15920

    Google Scholar 

  34. Forstmann BU, Keuken MC, Jahfari S, Bazin PL, Neumann N, Schafer A et al (2012) Corticosubthalamic white matter tract strength predict interindividual efficacy in stopping a motor response. Neuroimage 60:370–375

    Article  PubMed  Google Scholar 

  35. Friston K (2002a) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Ann Rev Neurosci 25(1):221–250

    Google Scholar 

  36. Friston KJ (2002b) Bayesian estimation of dynamical systems: an application to fMRI. Neuroimage 16(2):513–530

    Google Scholar 

  37. Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex-from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci. doi:10.3389/fnhum.2011.00019

    Google Scholar 

  38. Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM (2003) Does the cerebellum contribute to specific aspects of attention? Neuropsychologia 41(11):1452–1460

    Google Scholar 

  39. Heidemann RM, Ivanov D, Trampel R, Fasano F, Meyer H, Pfeuffer J, Turner R (2012) Isotropic submillimeter fMRI in the human brain at 7 T: combining reduced field⣳of⣳view imaging and partially parallel acquisitions. Magn Reson Med 68(5):1506–1516

    Article  PubMed  Google Scholar 

  40. Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. doi:10.3389/fnana.2010.00012

    Google Scholar 

  41. Johansen-Berg H, Behrens T, Robson MD, Drobnjak I, Rushworth M, Brady JM et al (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci U S A 101(36):13335–13340

    Google Scholar 

  42. Kachlik D, Baca V, Bozdechova I, Cech P, Musil V (2008) Anatomical terminology and nomenclature: past, present and highlights. Surg Radiol Anat 30(6):459–466

    Article  PubMed  Google Scholar 

  43. Kandel ER, Schwartz JH, Jessell T (2000) Principles of neural science, 4th edn. McGraw-Hill, NewYork, pp 1–1414

    Google Scholar 

  44. Kennedy DN, Lange N, Makris N, Bates J, Meyer J, Caviness VS (1998) Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cerebral Cortex 8(4):372–384 (New York: 1991)

    Article  CAS  PubMed  Google Scholar 

  45. Keren NI, Lozar CT, Harris KC, Morgan PS, Eckert MA (2009) In vivo mapping of the human locus coeruleus. Neuroimage 47(4):1261–1267

    Article  PubMed Central  PubMed  Google Scholar 

  46. Keuken MC, Bazin P-L, Crown L, Hootsmans J, Laufer A, Muller-Axt C, Sier R, van der Putten EJ, Schafer A, Turner R, Forstmann BU (2014) Quantifying inter-individual anatomical variability in the subcortex using 7T structural MRI. Neuroimage 94:40–46

    Google Scholar 

  47. Keuken MC, Bazin PL, Schafer A, Neumann J, Turner R, Forstmann BU (2013) Ultra-High 7 T MRI of structural age-related changes of the subthalamic nucleus. J Neurosci 33(11):4896–4900

    Article  CAS  PubMed  Google Scholar 

  48. Kitajima M, Korogi Y, Kakeda S, Moriya J, Ohnari N, Sato T et al (2008) Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology 50(8):675–681

    Article  PubMed  Google Scholar 

  49. Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A et al (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123(12):2512–2518

    Article  PubMed  Google Scholar 

  50. Lehéricy S (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and Pre-SMA projections to the human striatum. Cereb Cortex 14(12):1302–1309

    Article  PubMed  Google Scholar 

  51. Leuze CWU, Anwander A, Bazin PL, Dhital B, Stuber C, Reimann K et al (2012) Layer-specific intracortical connectivity revealed with diffusion MRI. Cerebral Cortex. doi:10.1093/cercor/bhs311

    Google Scholar 

  52. Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV et al (2006) Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 83(2–3):155–171

    Article  PubMed  Google Scholar 

  53. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development the international consortium for brain mapping (ICBM). Neuroimage 2(2PA):89–101

    Article  CAS  PubMed  Google Scholar 

  54. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K et al (2001) A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos Trans R Soc B Biol Sci 356(1412):1293–1322

    Article  CAS  Google Scholar 

  55. Mesulam M (2005) Imaging connectivity in the human cerebral cortex: the next frontier? Ann Neurol 57(1):5–7

    Article  PubMed  Google Scholar 

  56. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Compar Neurol 387(4):588–630

    Article  CAS  Google Scholar 

  57. Ngowyang G (1934) Die Cytoarchitektonik des menschlichen Stirnhirns I. Cytoarchitektonische Felderung der Regio granularis und Regio dysgranularis. Monogr Natl Res Inst Psychol Acad Sin (Shanghai) 7:1–68

    Google Scholar 

  58. Oishi K, Faria AV, van Zijl PC, Mori S (2010) MRI atlas of human white matter, 2nd ed. Academic, Waltham, pp 1–266

    Google Scholar 

  59. Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme, New York, pp 1–232

    Google Scholar 

  60. Paluzzi A, Belli A, Bain P, Viva L (2007) Brain “imaging”in the Renaissance. J R Soc Med 100(12):540–543

    Article  PubMed Central  PubMed  Google Scholar 

  61. Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616

    Article  CAS  PubMed  Google Scholar 

  62. Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cerebral Cortex 6(5):661–672 (New York: 1991)

    Article  CAS  PubMed  Google Scholar 

  63. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, White LE (2012) Neuroscience, 5th edn. Sinauer Associates Inc, Massachusetts, pp 1–833

    Google Scholar 

  64. Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13(4):669–683

    Article  CAS  PubMed  Google Scholar 

  65. Rajkowska G, Goldman-Rakic PS (1995a) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cerebral Cortex 5(4):307–322 (New York: 1991)

    Google Scholar 

  66. Rajkowska G, Goldman-Rakic PS (1995b) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach coordinate system. Cerebral Cortex 5(4):323–337 (NewYork: 1991)

    Google Scholar 

  67. Reil JC (1809) Die Sylvische Grube oder das Thal, das gestreifte große Hirnganglium, dessen Kapsel und die Seitentheile des großen Gehirns. Arch Physiol 9:195–208

    Google Scholar 

  68. Reil JC (1812) Die vördere Commissur im großen Gehirn. Arch Physiol 11:89–100

    Google Scholar 

  69. Sarkisov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew EA (1955) Atlas of the cytoarchitectonics of the human cerebral cortex. Medgiz, Moskow

    Google Scholar 

  70. Schmahmann JD, Pandya DN (2009) Fiber pathways of the brain. Oxford University Press, Oxford, pp 1–654

    Google Scholar 

  71. Smith G (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41(Pt 4):237

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Standring S (2008) Gray’s anatomy, 40 edn. Elsevier, Amsterdam, pp 1–1576

    Google Scholar 

  73. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2):489–501

    Article  PubMed  Google Scholar 

  74. Strasburger EH (1937) Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen. Journal fur psychologie und neurologie 47(6):565–606

    Google Scholar 

  75. Swaab DF (2003) The human hypothalamus: basic and clinical aspects. Part 1: nuclei of the human hypothalamus. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology, vol 79. Elsevier, Amsterdam, p 9

    Google Scholar 

  76. Swanson LW (2000) What is the brain? Trends Neurosci 23(11):519–527

    Article  CAS  PubMed  Google Scholar 

  77. Swanson LW, Bota M (2010) Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture. Proc Natl Acad Sci U S A 107(48):20610–20617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York, pp 1–122

    Google Scholar 

  79. Thompson PM, Schwartz C, Lin RT, Khan AA, Toga AW (1996) Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci 16(13):4261–4274

    CAS  PubMed  Google Scholar 

  80. Thompson PM, Cannon TD, Narr KL, Van Erp T, Poutanen V-P, Huttunen M et al (2001) Genetic influences on brain structure. Nat Neurosci 4(12):1253–1258

    Article  CAS  PubMed  Google Scholar 

  81. Turner R (2012) Neuroscientific applications of high-field MRI in humans. In: Hennig J, Speck O (eds) High-Field MR imaging. Springer, Berlin

    Google Scholar 

  82. Vesalius A (1543) De humani corporis fabrica libri septem. School of medicine, Padua

    Google Scholar 

  83. Vogt O (1910) Die myeloarchitektonische Felderung des menschlichen Stirnhirns. J Psychol Neurol 15(4/5):221–232

    Google Scholar 

  84. Vogt C, Vogt O (1926) Die vergleichenCytoarchitectonic definition of prefrontal areas in zdarchitektonische und die vergleichendreizphysiologische Felderung der Großhirnrinde unter besonderer Berücksichtigung der menschlichen. Naturwissenschaften 14(50):1190–1194

    Article  Google Scholar 

  85. Waehnert MD, Dinse J, Weiss M, Streicher MN, Waehnert P, Geyer S et al (2013) Anatomically motivated modeling of cortical laminae. NeuroImage. doi:10.1016/j.neuroimage.2013.03.078

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte U. Forstmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Forstmann, B., Keuken, M., Alkemade, A. (2015). An Introduction to Human Brain Anatomy. In: Forstmann, B., Wagenmakers, EJ. (eds) An Introduction to Model-Based Cognitive Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2236-9_4

Download citation

Publish with us

Policies and ethics