Skip to main content

Reciprocal Interactions of Computational Modeling and Empirical Investigation

  • Chapter
  • First Online:

Abstract

Models in general, and computational neural models in particular, are useful to the extent they fulfill three aims, which roughly constitute a life cycle of a model. First, at birth, models must account for existing phenomena, and with mechanisms that are no more complicated than necessary. Second, at maturity, models must make strong, falsifiable predictions that can guide future experiments. Third, all models are by definition incomplete, simplified representations of the mechanisms in question, so they should provide a basis of inspiration to guide the next generation of model development, as new data challenge and force the field to move beyond the existing models. Thus the final part of the model life cycle is a dialectic of model properties and empirical challenge. In this phase, new experimental data test and refine the model, leading either to a revised model or perhaps the birth of a new model. In what follows, we provide an outline of how this life cycle has played out in a particular series of models of the dorsal anterior cingulate cortex (ACC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  2. Poldrack RA (2008) The role of fMRI in cognitive neuroscience: where do we stand? Curr Opin Neurobiol 18(2):223–7

    Article  CAS  PubMed  Google Scholar 

  3. Poldrack RA (2012) The future of fMRI in cognitive neuroscience. Neuroimage 62(2):1216–20

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gage GJ, Parikh H, Marzullo TC (2008) The cingulate cortex does everything. Ann Improbable Res 14(3):12–15

    Google Scholar 

  5. Falkenstein M et al (1991) Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455

    Article  CAS  PubMed  Google Scholar 

  6. Gehring WJ et al (1990) The error-related negativity: an event-related potential accompanying errors. Psychophysiology 27:34

    Article  Google Scholar 

  7. Botvinick M et al (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402(6758):179–181

    Article  CAS  PubMed  Google Scholar 

  8. Botvinick MM et al (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652

    Article  CAS  PubMed  Google Scholar 

  9. Shidara M, Richmond BJ (2002) Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296(5573):1709–11

    Article  PubMed  Google Scholar 

  10. Shima K, Tanji J (1998) Role of cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–1338

    Article  CAS  PubMed  Google Scholar 

  11. Chandrasekhar PVS et al (2008) Neurobiological regret and rejoice functions for aversive outcomes. Neuroimage 39(3):1472–84

    Article  PubMed Central  PubMed  Google Scholar 

  12. Rainville P (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971

    Article  CAS  PubMed  Google Scholar 

  13. Eisenberger NI, Lieberman MD, Williams KD (2003) Does rejection hurt? An FMRI study of social exclusion. Science 302(5643):290–2

    Article  CAS  PubMed  Google Scholar 

  14. Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of cognitive operations in the human brain. Science 240(4859):1627–1631

    Google Scholar 

  15. Rudebeck PH et al (2008) Frontal cortex subregions play distinct roles in choices between actions and stimuli. J Neurosci 28(51):13775–85

    Article  CAS  PubMed  Google Scholar 

  16. Walton ME, Devlin JT, Rushworth MFS (2004) Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci 7(11):1259–1266

    Article  CAS  PubMed  Google Scholar 

  17. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18(6):643–662

    Article  Google Scholar 

  18. Brown JW, Braver TS (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science 307(5712):1118–1121

    Article  CAS  PubMed  Google Scholar 

  19. Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psych Rev 109(4):679–709

    Article  Google Scholar 

  20. Brown JW (2009) Multiple cognitive control effects of error likelihood and conflict. Psychol Res 73(6):744–50

    Article  PubMed Central  PubMed  Google Scholar 

  21. Nieuwenhuis S et al (2007) Error-likelihood prediction in the medial frontal cortex: a critical evaluation. Cereb Cortex 17:1570–1581

    Article  PubMed Central  PubMed  Google Scholar 

  22. Brown JW, Braver TS (2007) Risk prediction and aversion by anterior cingulate cortex. Cogn Affect Behav Neurosci 7(4):266–77

    Article  PubMed  Google Scholar 

  23. Brown JW, Braver TS (2008) A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex. Brain Res 1202:99–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Holroyd CB, Krigolson OE (2007) Reward prediction error signals associated with a modified time estimation task. Psychophysiology 44(6):913–7

    Article  PubMed  Google Scholar 

  25. Ferdinand NK et al (2012) The processing of unexpected positive response outcomes in the mediofrontal cortex. J Neurosci 32(35):12087–92

    Article  CAS  PubMed  Google Scholar 

  26. Jessup RK, Busemeyer JR, Brown JW (2010) Error effects in anterior cingulate cortex reverse when error likelihood is high. J Neurosci 30(9):3467–3472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Oliveira FT, McDonald JJ, Goodman D (2007) Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations. J Cogn Neurosci 19(12):1994–2004

    Article  PubMed  Google Scholar 

  28. Grinband J et al (2011) The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. Neuroimage 57(2):303–311

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yeung N, Nieuwenhuis S (2009) Dissociating response conflict and error likelihood in anterior cingulate cortex. J Neurosci 29(46):14506–14510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Forster SE, Brown JW (2011) Medial prefrontal cortex predicts and evaluates the timing of action outcomes. Neuroimage 55(1):253–65

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ito S et al (2003) Performance monitoring by anterior cingulate cortex during saccade countermanding. Science 302:120–122

    Article  CAS  PubMed  Google Scholar 

  32. Kennerley SW et al (2006) Optimal decision making and the anterior cingulate cortex. Nat Neurosci 9(7):940–947

    Article  CAS  PubMed  Google Scholar 

  33. Hayden BY, Pearson JM, Platt ML (2011) Neuronal basis of sequential foraging decisions in a patchy environment. Nat Neurosci 14(7):933–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Amador N, Schlag-Rey M, Schlag J (2000) Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J Neurophysiol 84(4):2166–70

    CAS  PubMed  Google Scholar 

  35. Matsumoto M et al (2007) Medial prefrontal cell activity signaling prediction errors of action values. Nat Neurosci 10(5):647–656

    Article  CAS  PubMed  Google Scholar 

  36. Cole MW et al (2009) Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci 32(11):566–74

    Article  CAS  PubMed  Google Scholar 

  37. Ford KA et al (2009) BOLD fMRI activation for anti-saccades in nonhuman primates. Neuroimage 45(2):470–6

    Article  PubMed  Google Scholar 

  38. Chamberlin TC (1965) The method of multiple working hypotheses. Science 148(3671):754–759

    Article  CAS  PubMed  Google Scholar 

  39. Platt JR (1964) Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146(3642):347–353

    Article  CAS  PubMed  Google Scholar 

  40. Amiez C, Joseph J-P, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. European J Neurosci 21(12):3447–52

    Article  Google Scholar 

  41. Scheffers MK, Coles MG (2000) Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. J Exp Psychol Hum Percept Perform 26(1):141–51

    Article  CAS  PubMed  Google Scholar 

  42. Steinhauser M, Maier M, Hübner R (2008) Modeling behavioral measures of error detection in choice tasks: response monitoring versus conflict monitoring. J Exp Psychol Hum Percept Perform 34(1):158–76

    Article  PubMed  Google Scholar 

  43. Yeung N, Cohen JD, Botvinick MM (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111(4):931–59

    Article  PubMed  Google Scholar 

  44. Holroyd CB et al (2005) A mechanism for error detection in speeded response time tasks. J Exp Psychol Gen 134(2):163–191

    Article  PubMed  Google Scholar 

  45. Alexander WH, Brown JW (2010) Computational models of performance monitoring and cognitive control. Top Cogn Sci 2:658–677

    Article  PubMed Central  PubMed  Google Scholar 

  46. Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14(10):1338–1344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Goldstein RZ et al (2009) Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc Natl Acad Sci U S A 106(23):9453–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Jahn A, Nee DE, Brown JW (2011) The neural basis of predicting the outcomes of imagined actions. Front Neurosci 5:128–128

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hillman KL, Bilkey DK (2012) Neural encoding of competitive effort in the anterior cingulate cortex. Nat Neurosci 15(9):1290–7

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki S et al (2012) Learning to simulate others’ decisions. Neuron 74(6):1125–37

    Article  CAS  PubMed  Google Scholar 

  51. Wessel JR et al (2012) Surprise and error: common neuronal architecture for the processing of errors and novelty. J Neurosci 32(22):7528–37

    Article  CAS  PubMed  Google Scholar 

  52. Glascher J et al (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66(4):585–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Intelligence Advanced Research Projects Activity (IARPA) through Department of the Interior (DOI) contract D10PC20023. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DOI or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua W. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alexander, W., Brown, J. (2015). Reciprocal Interactions of Computational Modeling and Empirical Investigation. In: Forstmann, B., Wagenmakers, EJ. (eds) An Introduction to Model-Based Cognitive Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2236-9_16

Download citation

Publish with us

Policies and ethics