Skip to main content

Optimal Decision Making in the Cortico-Basal-Ganglia Circuit

  • Chapter
  • First Online:
An Introduction to Model-Based Cognitive Neuroscience

Abstract

This chapter presents a model assuming that during decision making the cortico-basal-ganglia circuit computes probabilities that considered alternatives are correct, according to Bayes’ theorem. The model suggests how the equation of Bayes’ theorem is mapped onto the functional anatomy of a circuit involving the cortex, basal ganglia and thalamus. The chapter also describes the relationship of the model to other models of decision making and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023

    Article  CAS  PubMed  Google Scholar 

  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  CAS  PubMed  Google Scholar 

  3. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425

    Article  CAS  PubMed  Google Scholar 

  4. Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19:442–477

    Article  PubMed  Google Scholar 

  5. Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10(6):732–739

    Article  CAS  PubMed  Google Scholar 

  6. Frank MJ, Seeberger LC, OʼReilly RC (2004) By carrot or by stick: cognitive reinforcement learning in Parkinsonism. Science 306(5703):1940–1943

    Article  CAS  PubMed  Google Scholar 

  7. Gurney K, Prescott TJ, Redgrave PA (2001) Computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84(6):401–410

    Article  CAS  PubMed  Google Scholar 

  8. Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19(8):1120–1136

    Article  PubMed  Google Scholar 

  9. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318(5854):1309–1312

    Article  CAS  PubMed  Google Scholar 

  10. Bogacz R, Larsen T (2011) Integration of reinforcement learning and optimal decision-making theories of the basal ganglia. Neural Comput 23(4):817–851

    Article  PubMed  Google Scholar 

  11. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W.H. Freeman and Company, San Francisco

    Google Scholar 

  12. Baum CW, Veeravalli VV (1994) A sequential procedure for multihypothesis testing. IEEE Trans Inf Theory 40:1996–2007

    Article  Google Scholar 

  13. Wald A (1947) Sequential analysis. Wiley, New York

    Google Scholar 

  14. Wald A, Wolfowitz J (1948) Optimum character of the sequential probability ratio test. Ann Math Stat 19:326–339

    Article  Google Scholar 

  15. Dragalin VP, Tertakovsky AG, Veeravalli VV (1999) Multihypothesis sequential probability ratio tests—part I: asymptotic optimality. IEEE Trans Inf Theory 45:2448–2461

    Article  Google Scholar 

  16. McMillen T, Holmes P (2006) The dynamics of choice among multiple alternatives. J Math Psychol 50:30–57

    Article  Google Scholar 

  17. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced choice tasks. Psychol Rev 113:700–765

    Article  PubMed  Google Scholar 

  18. Coulthard EJ, Bogacz R, Javed S, Mooney LK, Murphy G, Keeley S et al. (2012) Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain 135(Pt 12):3721–3734

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zhang J, Bogacz R (2010) Optimal decision making on the basis of evidence represented in spike trains. Neural Computation 22:1113–1148

    Article  PubMed  Google Scholar 

  20. Parent A, Hazrati LN (1993) Anatomical aspects of information processing in primate basal ganglia. Trends Neurosci 16(3):111–116

    Article  CAS  PubMed  Google Scholar 

  21. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127

    Article  CAS  PubMed  Google Scholar 

  22. Laming DRJ (1968) Information theory of choice reaction time. Wiley, New York

    Google Scholar 

  23. Wagenmakers EJ, van der Maas HL, Grasman RP (2007) An EZ-diffusion model for response time and accuracy. Psychon Bull Rev 14(1):3–22

    Article  PubMed  Google Scholar 

  24. Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK, Roitman J et al (2008) Probabilistic population codes for bayesian decision making. Neuron 60(6):1142–1152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes. Nat Neurosci 9(11):1432–1438

    Article  CAS  PubMed  Google Scholar 

  26. Ditterich JA (2010) Comparison between mechanisms of multi-Alternative perceptual decision making: ability to explain human behavior, predictions for neurophysiology, and relationship with decision theory. Front Neurosci 4:184

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lepora NF, Gurney KN (2012) The basal ganglia optimize decision making over general perceptual hypotheses. Neural Comput 24(11):2924–2945

    Article  PubMed  Google Scholar 

  28. Gold JI, Shadlen MN (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36(2):299–308

    Article  CAS  PubMed  Google Scholar 

  29. Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature 447(7148):1075–1080

    Article  CAS  PubMed  Google Scholar 

  30. Hallworth NE, Wilson CJ, Bevan MD (2003) Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci 23(20):7525–7542

    CAS  PubMed  Google Scholar 

  31. Wilson CJ, Weyrick A, Terman D, Hallworth NE, Bevan MD (2004) A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. J Neurophysiol 91(5):1963–1980

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by EPSRC grant EP/I032622/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Bogacz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bogacz, R. (2015). Optimal Decision Making in the Cortico-Basal-Ganglia Circuit. In: Forstmann, B., Wagenmakers, EJ. (eds) An Introduction to Model-Based Cognitive Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2236-9_14

Download citation

Publish with us

Policies and ethics