Skip to main content

Investigation of Plant Abiotic Stress Tolerance by Proteomics and Phosphoproteomics

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants
  • 1432 Accesses

Abstract

Abiotic stresses, including drought and salt, are among the most devastating threats for modern agriculture. Overcoming these threats by modern breeding technologies requires an intricate understanding of underlying signaling mechanisms in plants. This book chapter summarizes major achievements and novel technologies and approaches to elucidate plant abiotic stress responses using proteomics and phosphoproteomics. Proteomic and phosphoproteomic studies of drought and salt stress in model and major crop plants have seen a boost over recent years, as mass spectrometry-based techniques advanced and were more widely available to plant scientists. The key proteins and mechanisms identified in these studies present leads for successful breeding of abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36(1):91–98

    CAS  PubMed  Google Scholar 

  • Agrawal GK, Jwa NS, Jung YH, Kim ST, Kim DW, Cho K, Shibato J, Rakwal R (2013) Rice proteomic analysis: sample preparation for protein identification. Methods Mol Biol 956:151–184. doi:10.1007/978-1-62703-194-3_12

    CAS  PubMed  Google Scholar 

  • Alpert AJ (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80(1):62–76. doi:10.1021/ac070997p

    CAS  PubMed  Google Scholar 

  • Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815. doi:10.1038/35048692

    Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36(5):652–663

    CAS  PubMed  Google Scholar 

  • Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320(5878):938–941. doi:10.1126/science.1157956

    CAS  PubMed  Google Scholar 

  • Bailey CM, Sweet SM, Cunningham DL, Zeller M, Heath JK, Cooper HJ (2009) SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J Proteome Res 8(4):1965–1971. doi:10.1021/pr800917p

    CAS  PubMed  Google Scholar 

  • Barkla BJ, Castellanos-Cervantes T, de Leon JL, Matros A, Mock HP, Perez-Alfocea F, Salekdeh GH, Witzel K, Zorb C (2013a) Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics—current achievements and perspectives. Proteomics 13(12–13):1885–1900. doi:10.1002/pmic.201200399

    CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O (2013b) Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 13(12–13):1801–1815. doi:10.1002/pmic.201200401

    CAS  PubMed  Google Scholar 

  • Batistic O, Kudla J (2009) Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta 1793(6):985–992. doi:10.1016/j.bbamcr.2008.10.006

    CAS  PubMed  Google Scholar 

  • Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292. doi:10.1038/nbt1240

    CAS  PubMed  Google Scholar 

  • Benschop JJ, Mohammed S, O'Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6(7):1198–1214. doi:10.1074/mcp.M600429-MCP200

    CAS  PubMed  Google Scholar 

  • Böhmer M, Romeis T (2007) A chemical-genetic approach to elucidate protein kinase function in planta. Plant Mol Biol 65(6):817–827. doi:10.1007/s11103-007-9245-9

    PubMed  Google Scholar 

  • Böhmer M, Schroeder JI (2011) Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J 67(1):105–118. doi:10.1111/j.1365-313X.2011.04579.x

    PubMed Central  PubMed  Google Scholar 

  • Böhmer M, Kurth J, Witte CP, Romeis T (2006) Function of plant calcium-dependent protein kinases in the activation of abiotic and pathogen-related stress responses and its potential application in the generation of stress-resistant plants. In: da Silva JA T (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues , vol 3, 1st edn. Global science books, London, pp 367–372

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448. doi:10.1126/science.218.4571.443

    CAS  PubMed  Google Scholar 

  • Campostrini N, Areces LB, Rappsilber J, Pietrogrande MC, Dondi F, Pastorino F, Ponzoni M, Righetti PG (2005) Spot overlapping in two-dimensional maps: a serious problem ignored for much too long. Proteomics 5(9):2385–2395. doi:10.1002/pmic.200401253

    CAS  PubMed  Google Scholar 

  • Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27(4):354–377. doi:10.1002/mas.20170

    CAS  PubMed  Google Scholar 

  • Castellana NE, Payne SH, Shen Z, Stanke M, Bafna V, Briggs SP (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105(52):21034–21038. doi:10.1073/pnas.0811066106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang IF, Hsu JL, Hsu PH, Sheng WA, Lai SJ, Lee C, Chen CW, Hsu JC, Wang SY, Wang LY, Chen CC (2012) Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. Plant Sci 185–186:131–142. doi:10.1016/j.plantsci.2011.09.009

    PubMed  Google Scholar 

  • Chen Y, Hoehenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J 63(1):1–17. doi:10.1111/j.1365-313X.2010.04218.x

    CAS  PubMed  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9(11):3100–3114

    CAS  PubMed  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6(5):1718–1727

    CAS  PubMed  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8(7):1579–1598. doi:10.1074/mcp. M800601-MCP200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533. doi:10.1038/Nature03972

    CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511

    CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. doi:10.1186/1471-2229-11-163

    PubMed Central  PubMed  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945. doi:10.1126/science.1153795

    CAS  PubMed  Google Scholar 

  • Dissmeyer N, Schnittger A (2011) The age of protein kinases. Methods Mol Biol 779:7–52. doi:10.1007/978-1-61779-264-9_2

    CAS  PubMed  Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci U S A 110(21):8744–8749. doi:10.1073/pnas.1221294110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38(Database issue):D828–834. doi:10.1093/nar/gkp810

    PubMed Central  CAS  PubMed  Google Scholar 

  • Engelsberger WR, Erban A, Kopka J, Schulze WX (2006) Metabolic labeling of plant cell cultures with K(15)NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods 2:14. doi:10.1186/1746-4811-2-14

    PubMed Central  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16(2):77–88. doi:10.1016/j.tplants.2010.10.005

    CAS  PubMed  Google Scholar 

  • Franz S, Ehlert B, Liese A, Kurth J, Cazalé A-C, Romeis T (2013) Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 6(270):rs8. doi:10.1093/mp/ssq064

    Google Scholar 

  • Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37(Database issue):D960–962. doi:10.1093/nar/gkn733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garces-Restrepo C, Muñoz G (2007) Irrigation management transfer, vol 32. Water reports. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Ge P, Ma C, Wang S, Gao L, Li X, Guo G, Ma W, Yan Y (2012) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem 402(3):1297–1313. doi:10.1007/s00216-011-5532-z

    CAS  PubMed  Google Scholar 

  • Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PM, Tham C, Duan L, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25(6):2132–2154. doi:10.1105/tpc.113.112896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gorg A, Drews O, Luck C, Weiland F, Weiss W (2009) 2-DE with IPGs. Electrophoresis 30(Suppl 1):S122–132. doi:10.1002/elps.200900051

    PubMed  Google Scholar 

  • Guo M, Gao W, Li L, Li H, Xu Y, Zhou C (2013) Proteomic and phosphoproteomic analyses of NaCl stress-responsive proteins in Arabidopsis roots. J Plant Interact 9(6):396–401. doi:10.1080/17429145.2013.845262

    Google Scholar 

  • He H, Li J (2008) Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves. Biochem Biophys Res Commun 371(4):883–888. doi:10.1016/j.bbrc.2008.05.001

    CAS  PubMed  Google Scholar 

  • Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36(Database issue):D1015–1021. doi:10.1093/nar/gkm812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Helmy M, Tomita M, Ishihama Y (2011) OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC Plant Biol 11(1):63. doi:10.1186/1471-2229-11-63

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052. doi:10.1111/j.1365-313X.2010.04124.x

    CAS  PubMed  Google Scholar 

  • Hoehenwarter W, van Dongen JT, Wienkoop S, Steinfath M, Hummel J, Erban A, Sulpice R, Regierer B, Kopka J, Geigenberger P, Weckwerth W (2008) A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics 8(20):4214–4225. doi:10.1002/pmic.200701047

    CAS  PubMed  Google Scholar 

  • Hoehenwarter W, Larhlimi A, Hummel J, Egelhofer V, Selbig J, van Dongen JT, Wienkoop S, Weckwerth W (2011) MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber. J Proteome Res 10(7):2979–2991. doi:10.1021/Pr101109a

    CAS  PubMed  Google Scholar 

  • Hsu JL, Wang LY, Wang SY, Lin CH, Ho KC, Shi FK, Chang IF (2009) Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 7(1):42. doi:10.1186/1477-5956-7-42

    PubMed Central  PubMed  Google Scholar 

  • Hu G, Houston NL, Pathak D, Schmidt L, Thelen JJ, Wendel JF (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189(3):1103–1115. doi:10.1534/genetics.111.132407

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C, Verrillo F, Renzone G, Arena S, Rocco M, Scaloni A, Marra M (2011) Response to biotic and oxidative stress in Arabidopsis thaliana: analysis of variably phosphorylated proteins. J Proteomics 74(10):1934–1949. doi:10.1016/j.jprot.2011.05.016

    CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Google Scholar 

  • Jacoby RP, Millar AH, Taylor NL (2010) Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J Proteome Res 9(12):6595–6604. doi:10.1021/pr1007834

    CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58(13):3591–3607. doi:10.1093/jxb/erm207

    CAS  PubMed  Google Scholar 

  • Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K, Gruissem W, Baginsky S, Schmidt R, Schulze WX, Sun Q, van Wijk KJ, Egelhofer V, Wienkoop S, Weckwerth W, Bruley C, Rolland N, Toyoda T, Nakagami H, Jones AM, Briggs SP, Castleden I, Tanz SK, Millar AH, Heazlewood JL (2011) MASCP gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270. doi:10.1104/pp. 110.168195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ke Y, Han G, He H, Li J (2009) Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 379(1):133–138. doi:10.1016/j.bbrc.2008.12.067

    CAS  PubMed  Google Scholar 

  • Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol 129(2):908–925. doi:10.1104/pp. 004002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R (2009) Plant phosphoproteomics: an update. Proteomics 9(4):964–988. doi:10.1002/pmic.200800548

    CAS  PubMed  Google Scholar 

  • Khan M, Takasaki H, Komatsu S (2005) Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses. J Proteome Res 4(5):1592–1599. doi:10.1021/pr0501160

    CAS  PubMed  Google Scholar 

  • Kim T-H, Hauser F, Ha T, Xue S, Böhmer M, Nishimura N, Munemasa S, Hubbard K, Peine N, B-h L, Lee S, Robert N, Parker JE, Schroeder JI (2011) Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Curr Biol 21(11):990–997. doi:10.1016/j.cub.2011.04.045

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kline KG, Barrett-Wilt GA, Sussman MR (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci U S A 107(36):15986–15991. doi:10.1073/pnas.1007879107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kline-Jonakin KG, Barrett-Wilt GA, Sussman MR (2011) Quantitative plant phosphoproteomics. Curr Opinion Plant Biol 14(5):507–511. doi:10.1016/j.pbi.2011.06.008

    CAS  Google Scholar 

  • Komatsu S, Tanaka N (2005) Rice proteome analysis: a step toward functional analysis of the rice genome. Proteomics 5(4):938–949. doi:10.1002/pmic.200401040

    CAS  PubMed  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74(8):1301–1322. doi:10.1016/j.jprot.2011.02.006

    CAS  PubMed  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16(6):1378–1391. doi:10.1105/tpc.021683

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta 1804(4):929–940

    CAS  PubMed  Google Scholar 

  • Lilley KS, Dupree P (2006) Methods of quantitative proteomics and their application to plant organelle characterization. J Exp Bot 57(7):1493–1499. doi:10.1093/jxb/erj141

    CAS  PubMed  Google Scholar 

  • Lim H, Eng J, Yates JR 3rd, Tollaksen SL, Giometti CS, Holden JF, Adams MW, Reich CI, Olsen GJ, Hays LG (2003) Identification of 2D-gel proteins: a comparison of MALDI/TOF peptide mass mapping to mu LC-ESI tandem mass spectrometry. J Am Soc Mass Spectrom 14(9):957–970

    CAS  PubMed  Google Scholar 

  • Liu CW, Hsu YK, Cheng YH, Yen HC, Wu YP, Wang CS, Lai CC (2012) Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun Mass Spectrom 26(15):1649–1660

    CAS  PubMed  Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14(1):37–42

    CAS  PubMed  Google Scholar 

  • May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, Weiss J, Recuenco-Munoz L, Ebenhoh O, Weckwerth W, Walther D (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179(1):157–166. doi:10.1534/genetics.108.088336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12(12):534–540. doi:10.1016/j.tplants.2007.09.009

    PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    CAS  PubMed  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10(7):339–346. doi:10.1016/j.tplants.2005.05.009

    CAS  PubMed  Google Scholar 

  • Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153(3):1161–1174. doi:10.1104/pp. 110.157347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10(1)

    Google Scholar 

  • Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11(4):535–553. doi:10.1002/pmic.201000553

    CAS  PubMed  Google Scholar 

  • Ng DW, Zhang C, Miller M, Shen Z, Briggs SP, Chen ZJ (2012) Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity 108(4):419–430. doi:10.1038/hdy.2011.92

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Salekdeh GH (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71(9):2144–2154

    PubMed  Google Scholar 

  • Nühse T, Stensballe A, Jensen O, Peck S (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16(9):2394–2405

    PubMed Central  PubMed  Google Scholar 

  • Nühse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51(5):931–9400. doi:10.1111/j.1365-313X.2007.03192.x

    PubMed Central  PubMed  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. doi:10.1016/j.cell.2006.09.026

    CAS  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9(5):2584–2599. doi:10.1021/pr100034f

    CAS  PubMed  Google Scholar 

  • Pechanova O, Takac T, Samaj J, Pechan T (2013) Maize proteomics: an insight into the biology of an important cereal crop. Proteomics 13(3–4):637–662. doi:10.1002/pmic.201200275

    CAS  PubMed  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8(12):2676–2686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Piques M, Schulze WX, Hohne M, Usadel B, Gibon Y, Rohwer J, Stitt M (2009) Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol Syst Biol 5:314. doi:10.1038/msb.2009.68

    PubMed Central  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DM, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop GJ, Sagredo B, Mejia N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, Herrera Mdel R, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold SE, Barreiro LE, Massa GA, Diambra L, Whitty BR, Vaillancourt B, Lin H, Massa AN, Geoffroy M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JM, Nielsen KL, Sonderkaer M, Iovene M, Torres GA, Jiang J, Veilleux RE, Bachem CW, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert B, Goverse A, van Ham RC, Visser RG (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195. doi:10.1038/nature10158

    Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99(12):8436–8441, Epub 2002 May 8428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rampitsch C, Bykova NV (2012) The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Front Plant Sci 3:144. doi:10.3389/fpls.2012.00144

    PubMed Central  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends Are insufficient to double global crop production by 2050. PLoS One 8(6):e66428. doi:10.1371/journal.pone.0066428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903. doi:10.1104/pp. 109.138677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reiland S, Finazzi G, Endler A, Willig A, Baerenfaller K, Grossmann J, Gerrits B, Rutishauser D, Gruissem W, Rochaix JD, Baginsky S (2011) Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proc Natl Acad Sci U S A 108(31):12955–12960. doi:10.1073/pnas.1104734108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crop Res 76(2–3):199–219

    Google Scholar 

  • Saqib M, Zörb C, Schubert S (2006) Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. J Plant Nutr Soil Sci 169(4):542–548. doi:10.1002/jpln.200520557

    CAS  Google Scholar 

  • Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B (2011) Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics 10(2):M110.003830. doi:10.1074/mcp.M110.003830

    PubMed Central  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115. doi:10.1126/science.1178534

    CAS  PubMed  Google Scholar 

  • Schulze WX (2010) Proteomics approaches to understand protein phosphorylation in pathway modulation. Curr Opin Plant Biol 13(3):280–287. doi:10.1016/j.pbi.2009.12.008

    CAS  PubMed  Google Scholar 

  • Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516. doi:10.1146/annurev-arplant-042809-112132

    CAS  PubMed  Google Scholar 

  • Shteynberg D, Deutsch E, Mendoza L, Slagel J, Lam HH, Nesvizhskii A, Moritz R (2012) PTMProphet: TPP software for validation of modified site locations on post-translationally modified peptides. Paper presented at the 60th ASMS Conference on Mass Spectrometry, Vancouver, BC, Canada, 20–24 May

    Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8

    Google Scholar 

  • Sugimoto M, Takeda K (2009) Proteomic analysis of specific proteins in the root of salt-tolerant barley. Biosci Biotechnol Biochem 73(12):2762–2765

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270. doi:10.1111/j.1365-3040.2011.02336.x

    CAS  PubMed  Google Scholar 

  • Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362. doi:10.1021/pr200611n

    CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822. doi:10.1126/science.1183700

    CAS  PubMed  Google Scholar 

  • Tomato Genome C (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641. doi:10.1038/nature11119

    Google Scholar 

  • Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6(270):rs8. doi:10.1126/scisignal.2003509

    PubMed  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077. doi:10.1002/elps.1150181133

    CAS  PubMed  Google Scholar 

  • Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteomics. doi:10.1016/j.jprot.2013.05.036

    PubMed  Google Scholar 

  • Vertommen A, Panis B, Swennen R, Carpentier SC (2011) Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 74(8):1165–1181. doi:10.1016/j.jprot.2011.02.016

    CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14. doi:10.1007/s00425-003-1105-5

    CAS  PubMed  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8(7):1470–1489. doi:10.1002/pmic.200700569

    CAS  PubMed  Google Scholar 

  • Wang P, Xue L, Batelli G, Lee S, Hou Y-J, Van Oosten MJ, Zhang H, Tao WA, Zhu J-K (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 110(27):11205–11210. doi:10.1073/pnas.1308974110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60(12):3545–3557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5(1):235–244. doi:10.1002/pmic.200400853

    CAS  PubMed  Google Scholar 

  • Yang Y, Thannhauser TW, Li L, Zhang S (2007) Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis 28(12):2080–2094. doi:10.1002/elps.200600524

    CAS  PubMed  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149(2):916–928

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11(1):49–67. doi:10.1021/pr200861w

    PubMed  Google Scholar 

  • Zhao Q, Zhang H, Wang T, Chen S, Dai S (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 82:230–253. doi:10.1016/j.jprot.2013.01.024

    CAS  PubMed  Google Scholar 

  • Zhou YJ, Gao F, Li XF, Zhang J, Zhang GF (2010) Alterations in phosphoproteome under salt stress in Thellungiella roots. Chin Sci Bull 55(32):3673–3679. doi:10.1007/s11434-010-4116-1

    CAS  Google Scholar 

  • Zörb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167(1):91–100

    Google Scholar 

  • Zörb C, Schmitt S, Mühling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10(24):4441–4449

    PubMed  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory is funded by the Deutsche Fors-chungsgemeinschaft (BO3155-3/1) and the European Space Agency (4000109583-ESA-CORA-GBF-2013-005-Böhmer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Böhmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Böhmer, M. (2015). Investigation of Plant Abiotic Stress Tolerance by Proteomics and Phosphoproteomics. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2211-6_3

Download citation

Publish with us

Policies and ethics