Skip to main content

Sorghum Transformation: Achievements, Challenges, and Perspectives

  • Chapter
  • First Online:

Abstract

Sorghum bicolor is one of the most important crops. It is cultivated globally not only as a source of human food and animal feed but also for renewable energy. In order to improve sorghum varieties, genetic transformation serves as a unique and important supplement to traditional methods for faster genetic gains. This review summarizes the most recent achievements in sorghum biotechnology by many research groups worldwide. The transformation methods and their contributions is presented in relationship to various types of explants such as calli, immature embryos, and shoot apices. The roles of promoters and selection systems are emphasized. Sorghum transformation results are evaluated with relevance to marker genes and agronomically important genes. This review also addresses the challenges in sorghum transformation and possible strategies to overcome some of these challenges.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-2202-4_17

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol Plant 37:341–348

    Article  CAS  Google Scholar 

  • Ahmad N, Sant R, Bokan M, Steadman KJ, Godwin ID (2012) Expression pattern of the alpha-kafirin promoter coupled with a signal peptide from Sorghum bicolor (L.) Moench. J Biomed Biotechnol 2012:1–8

    Article  Google Scholar 

  • Arulselvi I, Krishnaveni S (2009) Effect of hormones, explants and genotypes in in vitro culturing of sorghum. J Biochem Technol 1:96–103

    CAS  Google Scholar 

  • Arulselvi I, Michael P, Umamaheswari S, Krishanaveni S (2010) Agrobacterium mediated transformation of Sorghum bicolor for disease resistance. Intl J Pharma Bio Sci 1:272–281

    Google Scholar 

  • Balter M (1997) Transgenic corn ban sparks a furor. Science 275:1063–1063

    Article  CAS  Google Scholar 

  • Battraw M, Hall TC (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and β; -glucuronidase genes. Theor Appl Genet 82:161–168

    Article  CAS  PubMed  Google Scholar 

  • Brandão RL, Carneiro NP, De Oliveira AC, Coelho GT, Carneiro AA (2012) Genetic transformation of immature sorghum inflorescence via microprojectile bombardment. In: Yelda OÇ (ed) Transgenic Plants – Advances and Limitations. InTech, Croatia, pp 133–148

    Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Erson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol-Plant 33:92–100

    Article  Google Scholar 

  • Da Silva LS, Jung R, Zhao Z, Glassman K, Taylor J, Taylor J (2011a) Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines. J Cereal Sci 54:160–167

    Article  CAS  Google Scholar 

  • Da Silva LS, Taylor J, Taylor JR (2011b) Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, protein digestion. J Agri Food Chem 59:9265–9270

    Article  CAS  Google Scholar 

  • Dahlberg J, Berenji J, Sikora V, Latkovic D (2011) Assessing sorghum (Sorghum bicolor (L.) Moench) germplasm for new traits: food, fuels and unique uses. Maydica 56:85–92

    Google Scholar 

  • Demeke T, Hucl P, Baga M, Caswell K, Leung N, Chibbar RN (1999) Transgene inheritance and silencing in hexaploid spring wheat. Theor Appl Genet 99:947–953

    Article  CAS  Google Scholar 

  • Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Res 2:153–164

    Article  Google Scholar 

  • Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192

    Article  CAS  Google Scholar 

  • Fagard M, Vaucheret H (2000) (Trans) gene silencing in plants: how many mechanisms? Annu Rev Plant Biol 51:167–194

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization of the United Nations. (2013) FAOSTAT ProdSTAT, Production crops http://faostatfaoorg/site/567/defaultaspx#ancor. Accessed 16 Jan 2013

    Google Scholar 

  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 108:3803–3808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biothechnol 31:397–405

    Google Scholar 

  • Gallie DR, Young TE (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts: analysis of promoter activity, intron enhancement, mRNA untranslated regions on expression. Plant Physiol 106:929–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gamborg OL, Shyluk JP, Brar DS, Constabel F (1977) Morphogenesis and plant regeneration from callus of immature embryos of sorghum. Plant Sci Lett 10:67–74

    Article  CAS  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005a) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005b) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    Article  CAS  PubMed  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, San Secundo B, Narasu ML, Altosaar I (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  CAS  PubMed  Google Scholar 

  • Girijashankar V, Sharma KK, Balakrishna P, Seetharama N (2007) Direct somatic embryogenesis and organogenesis pathway of plant regeneration can seldom occur simultaneously within the same explant of sorghum. J SAT Agri Res 3:1–3

    Google Scholar 

  • Grootboom AW, Mkhonza NL, O’Kennedy MM, Chakauya E, Kunert KJ, Chikwamba RK (2010) Biolistic mediated sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems. Intl J Bot:1–6

    Google Scholar 

  • Guo C, Cui W, Feng X, Zhao J, Lu G (2011) Sorghum insect problems and management. J Integr Plant Biol 53:178–192

    Article  PubMed  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H-Q, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28(3):429–44

    Article  CAS  PubMed  Google Scholar 

  • Hagio T, Blowers AD, Earle ED (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep 10:260–264

    Article  CAS  PubMed  Google Scholar 

  • Hamaker BR, Mohamed AA, Habben JE, Huang CP, Larkins BA (1995) Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal Chem 72:583–588

    CAS  Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant Microbe In 13:649–657

    Article  CAS  Google Scholar 

  • Haseloff J, Amos B (1995) GFP in plants. Trends in Genetics 11:328–329

    Article  CAS  PubMed  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  • Hraska M, Rakousky S, Curn V (2006) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tiss Organ Cult 86:303–318

    Article  CAS  Google Scholar 

  • Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Kumpatla SP, Chandrasekharan MB, Hall TC (2000) Transgene silencing in monocots. Plant Mol Biol 43:323–346

    Article  CAS  PubMed  Google Scholar 

  • Jambagi S, Bhat RS, Bhat S, Kuruvinashetti MS (2010) Agrobacterium-mediated transformation studies in sorghum using an improved gfp reporter gene. J SAT Agri Res 8:1–5

    Google Scholar 

  • Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-lucuronidase as visual markers. Hereditas 137:20–28

    Article  CAS  PubMed  Google Scholar 

  • Jogeswar G, Ranadheer D, Anjaiah V, Kishor PK (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Dev Biol-Plant 43:159–166

    Article  Google Scholar 

  • Khan ZR, Pickett JA, Berg JVD, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962

    Article  CAS  Google Scholar 

  • Kimatu JN, Diarso M, Song CD, Agboola RS, Pang JS, Qi X, Liu B (2011) DNA cytosine methylation alterations associated with aluminium toxicity and low pH in Sorghum bicolor. Afri J Agri Res 6:4579–4593

    Google Scholar 

  • Kononowicz AK, Casas AM, Tomes DT, Bresan RA and Hasegawa PM (1995) New vistas are opened for sorghum improvement by genetic transformation. Afri Crop Sci J 3: 171–180

    Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afri J Biotechnol 10:3659–3670

    CAS  Google Scholar 

  • Krishnaveni S, Joeung JM, Muthukrishnan S, Liang GH (2001) Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. J Genet Breed 55:151–158

    CAS  Google Scholar 

  • Kumar V, Campbell LM, Rathore KS (2011) Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell Tiss Organ Cult 104:137–146

    Article  CAS  Google Scholar 

  • Kumar T, Dweikat I, Sato S, Ge Z, Nersesian N, Chen H, Elthon T, Bean S, Ioerger BP, Tilley M (2012) Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol J 10:533–544

    Article  CAS  PubMed  Google Scholar 

  • Little CR, Perumal R, Tesso T, Prom LK, Odvody GN, Magill CW (2012) Sorghum pathology and biotechnology-A fungal disease perspective: part I. Grain mold, head smut, ergot. Eur J Plant Sci Biotech 6:10–30

    Google Scholar 

  • Li JF, Norville JE, Aach J, et al. (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:Pages:688–691

    Google Scholar 

  • Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ (2009) Development of marker-free transgenic sorghum (Sorghum bicolor (L.) Moench) using standard binary vectors with bar as a selectable marker. Plant Cell Tiss Organ Cult 99:97–108

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breeding 7:43–49

    Article  CAS  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Saradhi PP (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Plantarum 54:647–652

    Article  CAS  Google Scholar 

  • Mall TK, Dweikat I, Sato SJ, Neresian N, Xu K, Ge Z, Wang D, Elthon T, Clemente T (2011) Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol Biol 75:467–479

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJ (1995) How and why do plants inactivate homologous (trans) genes? Plant Physiol 107(3):679–685

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen T-V, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tiss Organ Cult 91:155–164

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235

    Article  Google Scholar 

  • Ou-Lee T-M, Turgeon R, Wu R (1986) Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, sorghum. Proc Acad Sci USA 83:6815–6819

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pola, SR, Sarada, MN (2006) Somatic embryogenesis and plantlet regeneration in Sorghum bicolor (L.) Moench, from leaf segments. J Cell Mol Biol 5:99–107

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Raghuwanshi A, Birch RG (2010) Genetic transformation of sweet sorghum. Plant Cell Rep 29:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock biofuels. Bioprod Biorefining 1:147–157

    Article  CAS  Google Scholar 

  • Sadia B, Josekutty PC, Potlakayala SD, Patel P, Goldman S, Rudrabhatla SV (2010) An efficient protocol for culturing meristems of sorghum hybrids. ΦYTON 79:177–181

    Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu Z, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechol 31:686–688

    Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tiss Organ Cult 75:1–18

    Article  CAS  Google Scholar 

  • Tari I, Laskay G, Takacs Z, Poor P (2012) Response of sorghum to abiotic stresses: a review. J Agron Crop Sci 199(4):264–274

    Article  Google Scholar 

  • Taylor J, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271

    Article  CAS  Google Scholar 

  • Tesso T, Perumal R, Little C, Adeyanju A, Radwan G, Prom L, Magill C (2012) Sorghum pathology and biotechnology-A fungal disease perspective: part II. Anthracnose, stalk rot, downy mildew biology and biotechnology, health and nutrition of sorghum. Eur J Plant Sci Biotechnol 6:31–44

    Google Scholar 

  • The Africa Biofortified Sorghum (ABS) project. (2012) Project update http://ksiconnect.icrisat.org/wp-content/uploads/2012/11/8-Florence-Wambugu-ABS-for-Florence.pdf. Accessed July 2014

  • Vain P, Finer KR, Engler DE, Pratt RC, Finer JJ (1996) Intron mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L. ). Plant Cell Rep 15:489–494

    Article  CAS  PubMed  Google Scholar 

  • Vasil IK (1994) Molecular improvement of cereals. Plant Mol Biol 25:925–937

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Nain V, Kumari C, Singh SK, Narasu ML, Kumar PA (2008) Tissue specific response of Agrobacterium tumefaciens attachment to Sorghum bicolor (L.). Moench. Physiol Mol Biol Plants 14:307–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verma AK, Patil VU, Bhat RS (2011) A transiently expressed transposase system to generate Ds-tagged mutants for functional genomics in sorghum. Plant Cell Tiss Organ Cult 107:181–185

    Article  Google Scholar 

  • Wang JX, Sun Y, Cui GM, Hu JJ (2001) Transgenic maize plants obtained by pollen-mediated transformation. Acta Bot Sin 43:275–279

    CAS  Google Scholar 

  • Wang W, Wang J, Yang C, Li Y, Liu L, Xu J (2007) Pollen-mediated transformation of Sorghum bicolor plants. Biotechnol Appl Bioc 48:79–83

    Article  CAS  Google Scholar 

  • Wang Y-H, Poudel DD, Hasenstein KH, Van Deynze A (2011) Identification of SSR markers associated with saccharification yield using pool-based genome-wide association mapping in sorghum. Genome 54:883–889

    Article  CAS  PubMed  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho M-J, Zhao Z-Y (2013) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol-Plant. doi:101007/s11627-013-9583-z

    Google Scholar 

  • Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Percival Zhang Y-H, Dixon RA, Zhao B (2011) Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    Article  CAS  PubMed  Google Scholar 

  • Yohannes T, Frankard V, Sagi L, Swenen R, Jacobs M (1999) Nutritional quality improvement of sorghum through genetic transformation. In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st century. Springer, Netherlands, pp 617–620

    Chapter  Google Scholar 

  • Zhang M, Tang Q, Chen Z, Liu J, Cui H, Shu Q, Xia Y, Altosaar I (2009) Genetic transformation of Bt gene into sorghum (Sorghum bicolor L.) mediated by Agrobacterium tumefaciens. Chinese J Biotechnol 25(3):418–423

    CAS  Google Scholar 

  • Zhao Z, Tomes D (2003) Sorghum transformation. In: Jackson JF, Linskens HF, Inman RB (eds) Genetic transformation of plants. Springer, Berlin, pp 91–102

    Chapter  Google Scholar 

  • Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Jeoung JM, Liang GH, Muthukrishnan S, Krishnaveni S, Wilde G (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52(3):243–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyuan J. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Azhakanandam, K., Zhang, Z. (2015). Sorghum Transformation: Achievements, Challenges, and Perspectives. In: Azhakanandam, K., Silverstone, A., Daniell, H., Davey, M. (eds) Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2202-4_9

Download citation

Publish with us

Policies and ethics