Skip to main content

Gas Temperatures

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

Gas temperature is of great importance for assessment of heat exposure to tunnel users and tunnel structures, estimation of fire detection time and possibility of fire spread, and to design ventilation systems. In this chapter, the theory of fire plumes in ventilated flows is presented with a focus on the maximum ceiling gas temperature and its position in tunnel fires. The maximum ceiling excess gas temperature can be classified into two regions, depending on the ventilation velocity. Each can be divided into two subregions. The first subregion exhibits a linear increase which transits into a constant period, depending on the fire size, ventilation, and effective tunnel height. The position of the maximum ceiling gas temperature is directly related to a dimensionless ventilation velocity. A theoretical analysis of the upper smoke layer is presented and correlations for the distribution of ceiling gas temperature along the tunnel are given to support this analysis. Finally, a one-dimensional model of average gas temperatures in tunnel fires with longitudinal ventilation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carvel RO, Marlair G (2005) A history of fire incidents in tunnels. In: Beard AN, Carvel RO (eds) The Handbook of Tunnel Fire Safety. Thomas Telford Publishing, London, UK, pp 3–41

    Google Scholar 

  2. Fire-resistance tests—Elements of building construction—Part 1: General requirements (1999). First edn. International Organization for Standardization,

    Google Scholar 

  3. Fire resistance tests—Part 2: Alternative and additional procedures (1999). First edn. European Committee for Standardization, EN 1363-2

    Google Scholar 

  4. Beproeving van het gedrag bij verhitting van twee isolatiematerialen ter bescherming van tunnels bij brand (1979). Instituut TNO voor Bouwmaterialen en Bouwconstructies, Delft, The Netherlands

    Google Scholar 

  5. Richtlinien für Ausstattung und Betrieb von Tunneln (RABT) (1985). Ausgabe 1985 edn. Forschungsgesellschaft für Straßen- und Verkehrswesen

    Google Scholar 

  6. Abschlussbericht zum BMVBS/ BASt Forschungsvorhaben 15.0391/2003/ERB: Brandschutzverhalten von selbstverdich-tendem Beton (SVB) im Straßentunnelbau (2005). MFPA Leipzig, März

    Google Scholar 

  7. Hoult DP, Fay JA, Forney LJ (1969) A Theory of Plume Rise Compared with Field Observations. Journal of the Air Pollution Control Association 19:585–590

    Google Scholar 

  8. Hoult DP, C. WJ (1972) Turbulent plume in a laminar cross flow. Atmospheric Environment 6 (8):513–530

    Google Scholar 

  9. Kurioka H, Oka Y, Satoh H, Sugawa O (2003) Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Safety Journal 38:319–340

    Google Scholar 

  10. Li YZ, Lei B, Ingason H (2011) The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Safety Journal 46 (4):204–210

    Google Scholar 

  11. Li YZ, Ingason H (2012) The maximum ceiling gas temperature in a large tunnel fire. Fire Safety Journal 48:38–48

    Google Scholar 

  12. Li YZ, Ingason H (2010) Maximum Temperature beneath Ceiling in a Tunnel Fire. SP Report 2010:51, SP Technical Research Institute of Sweden, Borås, Sweden

    Google Scholar 

  13. Karlsson B, Quintier JG (2000) Enclosure Fire Dynamics. CRC Press, New York

    Google Scholar 

  14. Heskestad G (2008) Fire Plumes, Flame Height, and Air Entrainment. In: DiNenno PJ, Drysdale D, Beyler CL et al. (eds) The SFPE Handbook of Fire Protection Engineering. Fourth Edition edn. National Fire Protection Association, Quincy, MA, USA, pp 2–1–2–20

    Google Scholar 

  15. Zukoski EE Smoke movement and mixing in two-layer fire models. In: The 8th UJNR Joint Panel Meeting on Fire Research and Safety, Tsukuba, 13–17 June 1985.

    Google Scholar 

  16. Quintiere JG, J. RW, W JW (1981) The effect of room openings on fire plume entrainment. Combustion Science and Technology 26:193–201

    Google Scholar 

  17. Raj P. P. K., Moussa A. N., K A (1981) Experiments involving pool and vapor fires from spills of liquidified natural gas on water. Prepared for U.S. Dept. of Transportation, U.S. Coast Guard, Rept. No. CG-D-55–79.

    Google Scholar 

  18. McCaffrey BJ (1979) Purely Buoyant Diffusion Flames: Some Experimental Results. NBSIR 79-1910. National Bureau of Standards, Washington, D.C., USA

    Google Scholar 

  19. Ingason H, Lönnermark A, Li YZ (2011) Runehamar Tunnel Fire Tests. SP Technicial Research Institute, SP Report 2011:55 Borås, Sweden

    Google Scholar 

  20. Memorial Tunnel Fire Ventilation Test Program—Test Report (1995). Massachusetts Highway Department and Federal Highway Administration, Massachusetts

    Google Scholar 

  21. Li YZ, Ingason H (2014) Position of Maximum Ceiling Temperature in a Tunnel Fire. Fire Technology 50:889–905

    Google Scholar 

  22. Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Safety Journal 45:361–370

    Google Scholar 

  23. Ingason H, Li YZ (2010) Model scale tunnel fire tests with longitudinal ventilation. Fire Safety Journal 45:371–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haukur Ingason .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingason, H., Li, Y., Lönnermark, A. (2015). Gas Temperatures. In: Tunnel Fire Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2199-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2199-7_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2198-0

  • Online ISBN: 978-1-4939-2199-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics