Skip to main content

Neurotrophins, Their Receptors and Autism: Ligand vs. Receptor Abnormalities

  • Chapter
  • First Online:
  • 2297 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The role of the neurotrophins in supporting brain growth, development and maintenance is increasingly recognized in health and disease. On the other hand, the role of their receptors is just unfolding, as is, the hypothesis of the ligand-receptor homeostasis. Many toxins, toxicants, and infectious agents affect both the ligands and their receptors, disrupting this homeostasis and affecting many developmental processes. Accumulating evidence points to the abnormalities in both the neurotrophins and their receptors in autism. This chapter highlights some of the recent findings regarding neurotrophin/receptor abnormalities in autism

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175

    Article  CAS  PubMed  Google Scholar 

  • Armato U, Chakravarthy B, Pacchiana R, Whitfield JF (2013) Alzheimer’s disease: an update of the roles of receptors, astrocytes and primary cilia. Int J Mol Med 31:3–10

    CAS  PubMed  Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121:889–905

    Article  PubMed  Google Scholar 

  • Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55:323–326

    Article  PubMed  Google Scholar 

  • Bates B, Hirt L, Thoma SS, Akbarian S, Le D, Amin-Hanjani S, Whalen M, Jaenisch R, Moskowitz MA (2002) Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals. Neurobiol Dis 9:24–37

    Article  CAS  PubMed  Google Scholar 

  • Behrens MM, Strasser U, Lobner D, Dugan LL (1999) Neurotrophin-mediated potentiation of neuronal injury. Microsc Res Tech 45:276–284

    Article  CAS  PubMed  Google Scholar 

  • Ben Bashat D, Kronfeld-Duenias V, Zachor DA, Ekstein PM, Hendler T, Tarrasch R, Even A, Levy Y, Ben Sira L (2007) Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage 37:40–47

    Article  PubMed  Google Scholar 

  • Cappelletti G, Maggioni MG, Tedeshi G, Maci R (2003) Protein tyrosine nitration is triggered by nerve growth factor during neuronal differentiation of PC12 cells. Exp Cell Res 288:9–20

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo A, Callisano P (2012) Nerve growth factor and Alzheimer’s disease: new facts for an old hypothesis. Mol Neurobiol 46:588–604

    Article  CAS  PubMed  Google Scholar 

  • Chao SL, Moss JM, Harry GJ (2007) Lead-induced alterations of apoptosis and neurotrophic factor mRNA in the developing rat cortex, hippocampus, and cerebellum. J Biochem Mol Toxicol 21:265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng L, Ge Q, Sun B, Yu P, Ke X, Lu Z (2009) Polyacrylamide gel-based microarray; a novel method applied to the association study between the polymorphisms of BDNF gene and autism. J Biomed Nanotechnol 5:542–550

    Article  CAS  PubMed  Google Scholar 

  • Connolly AM, Chez M, Streif EM, Keeling RM, Golumbek PT, Kwon JM, Riviello JJ, Robinson RG, Neuman RJ, Deuel RM (2006) Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biol Psychiatry 59:354–363

    Article  CAS  PubMed  Google Scholar 

  • Corbett GT, Roy A, Pahan K (2013) Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB); implications for Alzheimer disease therapy. J Biol Chem 288:8299–8312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Correia CT, Coutinho AM, Sequeira AF, Sousa IG, Lourenco Venda L, Almeida JP, Abreu RL, Lobo C, Miguel TS, Conroy J, Cochrane L, Gallagher L, Gill M, Ennis S, Oliveira GG, Vicente A (2010) Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes Brain Behav 9:841–848

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254

    Article  CAS  PubMed  Google Scholar 

  • Croen LA, Goines P, Braunschweig D, Yolken R, Yoshida CK, Grether JK, Fireman B, Kharrazi M, Hansen RL, Van de Water J (2008) Brain-derived neurotrophic factor and autism: maternal and infant peripheral blood levels in the early markers for autism (EMA) study. Autism Res 1:130–137

    Article  PubMed Central  PubMed  Google Scholar 

  • Das KP, Chao SL, White LD, Haines WT, Harry GJ, Tilson HA, Barone S Jr (2001) Differential patterns of nerve growth factor, brain-derived neurotrophic factor and neurotrophi-3 mRNA and protein levels in developing regions of rat brain. Neuroscience 103:739–761

    Article  CAS  PubMed  Google Scholar 

  • Dawson G, Webb S, Schellenberg GD, Dager S, Friedman S, Aylward E, Richards T (2002) Defining the broader phenotype of autism: genetic, brain, and behavioral perspectives. Dev Psychpatol 14:581–611

    Google Scholar 

  • Erickson KI, Kim JS, Suever BL, Voss MW, Francis BM, Kramer AF (2008) Genetic contributions to age related decline in executive function: a 10-year longitudinal study of COMT and BDNF polymorphism. Front Hum Neurosci 2:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Gadow KD, Roohi J, DeVincent CJ, Kirsch S, Hatchwell E (2009) Association of COMT (Val158Met) and BDNF (Val66Met) gene polymorphisms with anxiety, ADHD and tics in children with autism spectrum disorder. J Autsm Dev Disord 39:1542–1551

    Article  Google Scholar 

  • Ghosh A, Greenberg ME (1995) Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15:89–103

    Article  CAS  PubMed  Google Scholar 

  • Guffon N, Kibleur Y, Copalu W, Tissen C, Breitkreutz J (2012) Developing a new formulation of sodium phenylbutyrate. Arch Dis Child 97:1081–1085

    Article  PubMed  Google Scholar 

  • Gurley GH, Jelaso AM, Ide CF, Spitsbergen JM (2007) Effects of polychlorinated biphenyls (PCBs) on expression of neurotrophic factors in C6 glial cells in culture. Neurotoxicology 28:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Hans A, Bajramovic JJ, Syan S, Perret E, Dunia I, Brahic M, Gonzales-Dunia D (2004) Persistent, noncytolytic infection of neurons by borna disease virus interferes with ERK ½ signaling and abrogates BDNF-induced synaptogenesis. FASEB J 18:863–865

    CAS  PubMed  Google Scholar 

  • Harte-Hargrove LC, Maclusky NJ, Scharfman HE (2013) Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neurosci 239:46–66

    Article  CAS  Google Scholar 

  • Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suzuki K, Minabe Y, Takei N, Iyo M, Mori N (2006) Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Progr Neuropsychopharmacol Biol Psychiatry 30:1529–1531

    Article  CAS  Google Scholar 

  • Hu YS, Long N, Pigino G, Brady ST, Lazarov O (2013) Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3β, neurotrophin-3 and CREB signaling. PLoS One 8:e64460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jockschat TN, Miche TM (2011) The role of neurotrophic factors in autism. Mol Psychiatry 16:478–490

    Article  Google Scholar 

  • Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A (2007) Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev Neurosci 25:367–372

    Article  CAS  PubMed  Google Scholar 

  • Kemper TL, Bauman M (1998) Neuropathology of infantile autism. J Neuropathol Exp Neurol 57:645–652

    Article  CAS  PubMed  Google Scholar 

  • Kemper TL, Bauman M (2002) Neuropathology of infantile autism. Mol Psychiatry 7:7S12–13

    Article  Google Scholar 

  • Khan A, Harney JW, Zavacki AM, Sajdel-Sulkowska EM (2014) Disrupted brain thyroid hormone (TH) homeostasis and altered TH-dependent brain gene expression in autism spectrum disorders. J Physiol Pharmacol 65:257–272

    CAS  PubMed  Google Scholar 

  • Kozlovskaia GV, Kliushnik TP, Goriunova AV, Turkova IL, Kalinina MA, Sergienko NS (2000) Nerve growth factor auto-antibodies in children with various forms of mental dysontogenesis and in schizophrenia high risk group. Zh Nevrol Psikhiatr Im S S Korsakova 100:50–52

    CAS  PubMed  Google Scholar 

  • Marx CE, Vance BJ, Jarskog LF, Chescheir NC, Gilmore JH (1999) Nerve growth factor, brain derived neurotrophic factor and neurotrophin-3 levels in human amniotic fluid. Am J Obstet Gynecol 181:1225–1230

    Article  CAS  PubMed  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Narita N, Sakuta R, Miyahara T, Naruse H, Okado N, Narita M (2004) Serum neurotrophin concentrations In autism and mental retardation: a pilot study. Brain Development 26:292–295

    Article  PubMed  Google Scholar 

  • Morrison ME, Mason CA (1998) Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J Neurosci 18:3563–3573

    CAS  PubMed  Google Scholar 

  • Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL, Hansen RL, Philips TM (2001) Neuropeptides and neurotrophin in neonatal blond of children with autism or mental retardation. Ann Neurol 49:597–606

    Article  CAS  PubMed  Google Scholar 

  • Nelson PG, Kuddo T, Song EY, Dambrosia JM, Kohler S, Satyanarayana G, Vandunk C, Grether JK, Nelson KB (2006) Selected neurotrophin, neuropeptides, and cytokines: developmental trajectory and concentrations in neonatal blood of children with autism or Down syndrome. Int J Dev Neurosci 24:73–80

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Nakamura K, Anitha A, Yamada K, Tsujii m, Iwayama Y, Hattori E, Toyota T, Takei N, Miyachi T, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya k, Sughihara G, Suda S, Ouchi Y, Sugiyama T, Yoshikawa T, Mori N (2007) Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochem Biophys Res Comm 356:200–206

    Article  CAS  PubMed  Google Scholar 

  • Palmen SJ, Hulshoff Pol HE, Kemner C, Schnack HG, Durston S, Lahuis BE, Kahn RS, Van Engeland H (2005) Increased grey matter volume in medication naïve high functioning children with autism spectrum disorder. Psychol Med 35:561–570

    Article  PubMed  Google Scholar 

  • Pasarica D, Gheorghiu M, Toparceanu F, Bleotu C, Ichim L, Trandafir T (2005) Neurotrophin-3, TNF-alpha and IL-6 relations in serum and cerebrospinal fluid of ischemic stroke patients. Roum Arch Microbiol Immunol 64:27–33

    CAS  PubMed  Google Scholar 

  • Perry EK, Lee ML, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, Folly E, Iversen PE, Bauman ML, Perry RH, Wenk GL (2001) Cholinergic activity in autism: abnormalities in the cerebral cortex ad basal forebrain. Am J Psychiatry 158:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Raz N, Rodrigue KM, Kennedy KM, Land S (2009) Genetic and vascular modifiers of age sensitive cognitive skills: effects of COMT, BDNF, ApoE, and hypertension. Neuropsychology 23:105–116

    Article  PubMed Central  PubMed  Google Scholar 

  • Riikonen R, Vanhala R (1999) Levels of cerebrospinal fluid nerve-growth factor differ in infantile autism and Rett syndrome. Dev Med Child Neurol 41:148–152

    Article  CAS  PubMed  Google Scholar 

  • Rout UK, Dhossche DM (2008) A pathogenic model of autism involving Purkinje cell loss through anti GAD antibodies. Med Hypotheses 71:218–221

    Article  CAS  PubMed  Google Scholar 

  • Sadakata T, Shinoda Y, Oka M, Sekine Y, Sato Y, Saruta C, Miwa H, Tanaka M, Itohara S, Furuichi T (2012) Reduced axonal localization of a Caps2 splice variant impairs axonal release of BDNF and causes autistic-like behavior in mice. Proc Nat Acad Sci USA 109:21104–21109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 8:366–372

    Article  CAS  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM, Xu M, McGinnis W, Koibuchi N (2011) Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 10:43–48

    Article  CAS  PubMed  Google Scholar 

  • Sakata K, Woo NH, Martinowich K, Greene JS, Schloesser RJ, Shen L, Lu B (2009) Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in prefrontal cortex. Proc Nat Acad Sci USA 106:5942–5947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Segal RA, Pomeroy SL, Stiles CD (1995) Axonal growth and fasciculation linked to differential expression of BDNF and NT-3 receptors in developing granule cells. J Neurosci 15:4970–4981

    CAS  PubMed  Google Scholar 

  • Sheikh AM, Malik M, Wen G, Chauhan A, Chauhan V, Gong CX, Liu F, Brown WT, LiX (2010) BDNF-Akt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res 88:2641–2647

    Google Scholar 

  • Söderström S, Ebendal T (1995) In vitro toxicity of methyl mercury: effects on nerve growth factor (NGF)-responsive neurons and on NGF synthesis in fibroblasts. Toxicol Lett 75:133–144

    Article  PubMed  Google Scholar 

  • Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59:184–192

    Article  CAS  PubMed  Google Scholar 

  • Takumi K, Mori T, Shimizu K, Hayashi M (2005) Developmental changes in concentrations and distributions of neurotrophins in the monkey cerebellar cortex. J Chem Neuroanat 30:212–220

    Article  CAS  PubMed  Google Scholar 

  • Tostes MH, Teixeira HC, Gattaz WF, Brandao MA, Raposo NR (2012) Altered neurotrophin, neuropeptide, cytokines and nitric oxide levels in autism. Pharmacopsychiatry 45:241–243

    Article  CAS  PubMed  Google Scholar 

  • Tsai SJ (2005) Is autism caused by early hyperactivity of brain-derived neurotrophic factor? Med Hypotheses 65:79–82

    Article  CAS  PubMed  Google Scholar 

  • Uutela M, Lindholm J, Louhivuori V, Wei H, Louhivuori LM, Pertovaara A, Akerman K, Castren E, Castren ML (2012) Reduction of BDNF expressionin Fmr1 knockout mice worsens cognitive deficit but improves hyperactivity and sensorimotor deficits. Genes Brain Behav 11:513–523

    Article  CAS  PubMed  Google Scholar 

  • Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7:406–416

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Sajdel-Sulkowska EM, Iwasaki T, Koibuchi N (2013a) Aberrant cerebellar neurotrophin-3 expression induced by lipopolysaccharide exposure during brain development. Cerebellum 12:316–318

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Sulkowski ZL, Parekh P, Khan A, Chen T, Midha S, Iwasaki T, Shimokawa N, Koibuch N, Zavacki AM, Sajdel-Sulkowska EM (2013b) Effects of perinatal Lipopolysaccharide (LPS) exposure on the developing rat brain; modeling the effect of maternal infection in the developing human CNS. Cerebellum 12:572–586

    Article  CAS  PubMed  Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113:559–568

    Article  CAS  PubMed  Google Scholar 

  • Zagrebelsky M, Korte M (2014) Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76:628–638

    Article  CAS  PubMed  Google Scholar 

  • Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302:826–830

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Sajdel-Sulkowska D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sajdel-Sulkowska, E. (2015). Neurotrophins, Their Receptors and Autism: Ligand vs. Receptor Abnormalities. In: Fatemi, S. (eds) The Molecular Basis of Autism. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2190-4_18

Download citation

Publish with us

Policies and ethics