Skip to main content

Morphology Computation Algorithms: Generalities

  • Chapter
  • First Online:
Morphological Modeling of Terrains and Volume Data

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 452 Accesses

Abstract

We propose different criteria for classifying algorithms for morphology computation (Sect. 2.1). Such criteria are based on the dimension of the input scalar field (2D, 3D, or dimension-independent), on the input format (simplicial models, regular grids), on the output information (ascending or descending Morse complex, Morse-Smale complex), on the format of the output information, and on the algorithmic approach applied. This last criterion leads to a classification into boundary-based and region-growing algorithms (coming from Banchoff’s piecewise linear Morse theory), algorithms based on the watershed transform, and based on Forman’s discrete Morse theory. We will use this classification to organize the survey provided in the remainder of the book. We discuss methods to compute the critical points of the scalar field, which is a basic subcomponent of most morphology computation algorithms (Sect. 2.2), and solutions for dealing with the domain boundary (Sect. 2.3), and with plateaus (Sect. 2.4), which are common issues when applying such algorithms to real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J.S. Vitter, and R. Wickremesinghe. Flow computation on massive grid terrains. Geoinformatica, 7(4):283–313, 2003.

    Article  Google Scholar 

  2. C. L. Bajaj, V. Pascucci, and D. R. Shikore. Visualization of scalar topology for structural enhancement. In Proc. IEEE Visualization’98, pages 51–58. IEEE Computer Society, 1998.

    Google Scholar 

  3. C. L. Bajaj and D. R. Shikore. Topology preserving data simplification with error bounds. Computers and Graphics, 22(1):3–12, 1998.

    Article  Google Scholar 

  4. T. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly, 77(5):475–485, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, and M. Spagnuolo. Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys, 40(4):Article 12, 2008.

    Google Scholar 

  6. Y.-J. Chiang, T. Lenz ans X. Lua, and G. Rote. Simple and optimal output-sensitive construction of contour trees using monotone paths. Computational Geometry: Theory and Applications, 30(2):165–195, 2005.

    Google Scholar 

  7. L. Čomić, L. De Floriani, and F. Iuricich. Building morphological representations for 2D and 3D scalar fields. In E. Puppo, A. Brogni, and L. De Floriani, editors, Eurographics Italian Chapter Conference, pages 103–110. Eurographics, 2010.

    Google Scholar 

  8. L. Čomić, L. De Floriani, and L. Papaleo. Morse-Smale decompositions for modeling terrain knowledge. In Proc. International Conference on Spatial Information Theory (COSIT), volume 3693 of Lecture Notes in Computer Science, pages 426–444. Springer, 2005.

    Google Scholar 

  9. H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge University Press, England, 2001.

    Book  MATH  Google Scholar 

  10. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds. In Proc. 19th ACM Symposium on Computational Geometry, pages 361–370, 2003.

    Google Scholar 

  11. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proc. 17th ACM Symposium on Computational Geometry, pages 70–79, 2001.

    Google Scholar 

  12. H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104, 1990.

    Article  MATH  Google Scholar 

  13. T. Gerstner and R. Pajarola. Topology preserving and controlled topology simplifying multi-resolution isosurface extraction. In Proc. IEEE Visualization’00, pages 259–266, 2000.

    Google Scholar 

  14. A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. A practical approach to Morse-Smale complex computation: Scalability and generality. IEEE Transactions on Visualization and Computer Graphics, 14(6):1619–1626, Nov-Dec 2008.

    Article  Google Scholar 

  15. A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 13(6):1440–1447, Nov-Dec 2007.

    Article  Google Scholar 

  16. R. Klette and A. Rosenfeld. Digital Geometry - Geometric Methods for Digital Picture Analysis. Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco, 2004.

    MATH  Google Scholar 

  17. P. Magillo, L. De Floriani, and F. Iuricich. Morphologically-aware elimination of flat edges from a tin. In Proc. 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS 2013), November 5-8 2013.

    Google Scholar 

  18. A. Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation. Transactions on Visualization and Computer Graphics, 5(4):308–321, 1999.

    Article  Google Scholar 

  19. F. Meyer. Topographic distance and watershed lines. Signal Processing, 38:113–125, 1994.

    Article  MATH  Google Scholar 

  20. X. Ni, M. Garland, and J. C. Hart. Fair Morse functions for extracting the topological structure of a surface mesh. In International Conference on Computer Graphics and Interactive Techniques ACM SIGGRAPH, pages 613–622, 2004.

    Google Scholar 

  21. L. Papaleo. Surface Reconstruction: Online Mosaicing and Modelling with Uncertainty. PhD thesis, University of Genova – Department of Computer Science, 2004.

    Google Scholar 

  22. T. K. Peucker and D. H. Douglas. Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and Image Processing, 4:375–387, 1975.

    Article  Google Scholar 

  23. J. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms, and parallelization strategies. Fundamenta Informaticae, 41:187–228, 2000.

    MathSciNet  MATH  Google Scholar 

  24. B. Schneider. Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis, 37(2):244–263, 2005.

    Article  Google Scholar 

  25. B. Schneider and J. Wood. Construction of metric surface networks from raster-based DEMs. In S. Rana, editor, Topological Data Structures for Surfaces, pages 53–70. John Wiley & Sons Ltd, 2004.

    Google Scholar 

  26. P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin and New York, 2004.

    Book  Google Scholar 

  27. S. Takahashi, T. Ikeda, T. L. Kunii, and M. Ueda. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. In Computer Graphics Forum, volume 14, pages 181–192, 1995.

    Google Scholar 

  28. S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its application to transfer function design. Graphical Models, 66(1):24–49, 2004.

    Article  MATH  Google Scholar 

  29. J. Toriwaki and T. Fukumura. Extraction of structural information from gray pictures. Computer Graphics and Image Processing, 7:30–51, 1978.

    Article  Google Scholar 

  30. L. T. Watson, T. J. Laffey, and R. M. Haralick. Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation. Computer Vision, Graphics, and Image Processing, 29:143–167, 1985.

    Google Scholar 

  31. G. Weber and G. Scheuermann. Automating transfer function design based on topology analysis. In G. Brunnett, B. Hamann, H. Müller, and L. Linsen, editors, Geometric Modeling for Scientific Visualization, Mathematics and Visualization. Springer Verlag, Heidelberg, 2004.

    Google Scholar 

  32. G. H. Weber, G. Scheuermann, H. Hagen, and B. Hamann. Exploring scalar fields using critical isovalues. In Proc. IEEE Visualization’02, pages 171–178. IEEE Computer Society, 2002.

    Google Scholar 

  33. G. H. Weber, G. Scheuermann, and B. Hamann. Detecting critical regions in scalar fields. In G.-P. Bonneau, S. Hahmann, and C. D. Hansen, editors, Proc. Data Visualization Symposium, pages 85–94. ACM Press, New York, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Čomić, L., De Floriani, L., Magillo, P., Iuricich, F. (2014). Morphology Computation Algorithms: Generalities. In: Morphological Modeling of Terrains and Volume Data. SpringerBriefs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2149-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2149-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2148-5

  • Online ISBN: 978-1-4939-2149-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics