Skip to main content

Moving Forward: Making BRAF-Targeted Therapy Better

  • Chapter
  • First Online:
BRAF Targets in Melanoma

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 82))

  • 895 Accesses

Abstract

For half of the advanced melanoma population, selective BRAF inhibitor therapy has transformed the natural history of disease and provided a platform for developing molecularly targeted therapy combinations. The clinical utility of vemurafenib, FDA approved BRAF inhibitor, has been validated by another potent and selective agent, dabrafenib. However, two clinical limitations of BRAF inhibitor therapy frame the problem for the melanoma field: de novo and acquired resistance. Insights into the mechanisms underlying both of these phenomena have set the stage for clinical investigation of several novel BRAF inhibitor based combination therapies. Foremost among them is the combination of a MEK inhibitor with BRAF inhibitor. Preliminary clinical evidence suggests that this combination may supplant single agent BRAF inhibitor therapy in the near future as the standard approach for metastatic patients. Yet resistance remains a challenge and strategies to target non-MAP kinase pathway dependent mechanisms are needed. This chapter will outline the preclinical evidence that supports the categorization of resistance mechanisms and the framework for clinical investigation of novel combination therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kim K, Flaherty KT, Chapman PB, et al. Pattern and outcome of disease progression in phase I study of vemurafenib in patients with metastatic melanoma (MM). J Clin Oncol. 2011;29(Suppl; abstr 8519).

    Article  CAS  PubMed  Google Scholar 

  4. McArthur GA, Puzanov I, Amaravadi R, et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30:1628–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Xing F, Persaud Y, Pratilas CA, et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene. 2012;31:446–57.

    Article  CAS  PubMed  Google Scholar 

  7. Paraiso KH, Xiang Y, Rebecca VW, et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011;71:2750–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Nathanson KL, Martin AM, Letrero R, et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor GSK2118436. J Clin Oncol 2011;29(Suppl; abstr 8501).

    Google Scholar 

  9. Trunzer K, Pavlick AC, Schuchter L, et al. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J Clin Oncol. 2013;31:1767–74.

    Article  CAS  PubMed  Google Scholar 

  10. Paraiso KH, Fedorenko IV, Cantini LP, et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer. 2010;102:1724–30.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gonzalez R, Ribas A, Daud A. Pavlick A. Gajewski TG, Puzanov I, Teng MSL, Chan I, Choong NW, McArthur G: Phase IB Study of Vemurafenib in Combination with the MEK inhibitor, GDC-0973, in Patients with Unresectable or Metastatic BRAFV600 Mutated Melanoma. Proceedings of the 37th Annual ESMO Congress. 2012:2744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439:358–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Poulikakos PI, Zhang C, Bollag G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464:427–30.

    Article  CAS  PubMed  Google Scholar 

  16. Su F, Viros A, Milagre C, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366:207–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ciuffreda L, Del Bufalo D, Desideri M, et al. Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations. Neoplasia. 2009;11:720–31.

    Article  CAS  PubMed  Google Scholar 

  18. Flaherty KT, Infante JR, Daud A, et al: Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N Engl J Med. 2012;367(18):1694–703.

    Google Scholar 

  19. Emery CM, Vijayendran KG, Zipser MC, et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A. 2009;106:20411–6.

    Article  CAS  PubMed  Google Scholar 

  20. Pratilas CA, Taylor BS, Ye Q, et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A. 2009;106:4519–24.

    Article  CAS  PubMed  Google Scholar 

  21. Morris EJ, Jha S, Restaino CR, et al: Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 2013;3(7):742–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Das Thakur MS, Landman AS, et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature. 2013;494:251–5.

    Article  CAS  PubMed  Google Scholar 

  23. Solit DB, She Y, Lobo J, et al. Pulsatile administration of the epidermal growth factor receptor inhibitor gefitinib is significantly more effective than continuous dosing for sensitizing tumors to paclitaxel. Clin Cancer Res. 2005;11:1983–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shah NP, Kasap C, Weier C, et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell. 2008;14:485–93.

    Article  CAS  PubMed  Google Scholar 

  25. Stuart DD, Li N, Poon DJ, Aardalen K, Kaufman S, Merritt H, Salangsang F, Lorenzana E, Li A, Ghoddusi M, Caponigro G, Sun F, Kulkarni S, Kakar S, Turner N, Zang R, Tellew J, Pryer N.: Preclinical profile of LGX818: A potent and selective RAF kinase inhibitor. Cancer Res. 2012;72(8):(Supplement 1).

    Google Scholar 

  26. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  CAS  PubMed  Google Scholar 

  27. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379:1893–901.

    Article  CAS  PubMed  Google Scholar 

  28. Shi H, Moriceau G, Kong X, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun. 2012;3:724.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Smith V, Sausville EA, Camalier RF, et al. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother Pharmacol. 2005;56:126–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Paraiso KH, Haarberg HE, Wood E, et al. The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin Cancer Res. 2012;18:2502–14.

    Article  CAS  PubMed  Google Scholar 

  31. Solit DB, Osman I, Polsky D, et al. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res. 2008;14:8302–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pacey S, Gore M, Chao D, et al. A Phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma. Invest New Drugs. 2012;30:341–9.

    Google Scholar 

  33. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dumaz N. Mechanism of RAF isoform switching induced by oncogenic RAS in melanoma. Small GTPases. 2011;2:289–92.

    Article  CAS  PubMed  Google Scholar 

  35. Alavi A, Hood JD, Frausto R, et al. Role of Raf in vascular protection from distinct apoptotic stimuli. Science. 2003;301:94–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Smalley KS, Xiao M, Villanueva J, et al. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene. 2009;28:85–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mielgo A, Seguin L, Huang M, et al. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med. 2011;17:1641–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Greger JG, Eastman SD, Zhang V, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012;11:909–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wenglowsky S, Moreno D, Rudolph J, et al. Pyrazolopyridine inhibitors of B-Raf(V600E). Part 3: an increase in aqueous solubility via the disruption of crystal packing. Bioorg Med Chem Lett. 2012;22:912–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Murphy EA, Shields DJ, Stoletov K, et al. Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRbeta/B-RAF. Proc Natl Acad Sci U S A. 2010;107:4299–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kono M, Dunn IS, Durda PJ, et al. Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res. 2006;4:779–92.

    Article  CAS  PubMed  Google Scholar 

  43. Goodall J, Carreira S, Denat L, et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 2008;68:7788–94.

    Article  CAS  PubMed  Google Scholar 

  44. Frederick DT, Piris A, Cogdill AP, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19:1225–31.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Boni A, Cogdill AP, Dang P, et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010;70:5213–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.

    Article  CAS  PubMed  Google Scholar 

  47. Yokoyama S, Feige E, Poling LL, et al. Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res. 2008;21:457–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Haq R, Yokoyama S, Hawryluk EB, et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci U S A. 2013;110:4321–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tron VA, Krajewski S, Klein-Parker H, et al. Immunohistochemical analysis of Bcl-2 protein regulation in cutaneous melanoma. Am J Pathol. 1995;146:643–50.

    Article  CAS  PubMed  Google Scholar 

  50. Jansen B, Wacheck V, Heere-Ress E, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet. 2000;356:1728–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sale MJ, Cook SJ. The BH3 mimetic ABT-263 synergizes with the MEK1/2 inhibitor selumetinib/AZD6244 to promote BIM-dependent tumour cell death and inhibit acquired resistance. Biochem J. 2013;450:285–94.

    Article  CAS  PubMed  Google Scholar 

  52. Wroblewski D, Mijatov B, Mohana-Kumaran N, et al. The BH3-mimetic ABT-737 sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors but does not reverse acquired resistance. Carcinogenesis. 2013;34:237–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Rudin CM, Hann CL, Garon EB, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18:3163–9.

    Google Scholar 

  54. Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Abel EV, Aplin AE. FOXD3 is a mutant B-RAF-regulated inhibitor of G(1)-S progression in melanoma cells. Cancer Res. 2010;70:2891–900.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Basile KJ, Abel EV, Aplin AE. Adaptive upregulation of FOXD3 and resistance to PLX4032/4720-induced cell death in mutant B-RAF melanoma cells. Oncogene. 2012;31:2471–9.

    Article  CAS  PubMed  Google Scholar 

  57. Abel EV, Basile KJ, Kugel CH 3rd, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest. 2013;123:2155–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Prickett TD, Agrawal NS, Wei X, et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet. 2009;41:1127–32.

    Article  CAS  PubMed  Google Scholar 

  59. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, et al. Relief of Feedback Inhibition of HER3 Transcription by RAF and MEK Inhibitors Attenuates Their Antitumor Effects in BRAF-Mutant Thyroid Carcinomas. Cancer Discov. 2013;3:520–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Tsao H, Goel V, Wu H, et al. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122:337–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Stahl JM, Sharma A, Cheung M, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004;64:7002–10.

    Article  CAS  PubMed  Google Scholar 

  62. Corcoran RB, Rothenberg SM, Hata AN, Faber AC, Piris A, Nazarian RM, Brown RD, Godfrey JT, Winokur D, Walsh J, Mino-Kenudson M, Maheswaran S, Settleman J, Wargo JA, Flaherty KT, Haber DA, Engelman JA. TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma. Sci Transl Med. 2013 Jul 31;5(196):196ra98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wilson TR, Fridlyand J, Yan Y, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith T. Flaherty MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flaherty, K. (2015). Moving Forward: Making BRAF-Targeted Therapy Better. In: Sullivan, R. (eds) BRAF Targets in Melanoma. Cancer Drug Discovery and Development, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2143-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2143-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2142-3

  • Online ISBN: 978-1-4939-2143-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics