Skip to main content

Molecular Diagnostics and Tumor Mutational Analysis

  • Chapter
  • First Online:
BRAF Targets in Melanoma

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 82))

  • 897 Accesses

Abstract

Genetic and genomic analysis of melanoma tumor samples has identified a number of somatic mutations integral to melanoma pathogenesis, with the most prevalent mutation being the BRAF V600 mutation. Targeted inhibitors directed against this mutation have produced improved overall survival compared to chemotherapy. Multiple additional somatic mutations have been identified, and some also have prompted the development of therapy targeted against them. In this chapter, we review common techniques used to identify gene mutations and genomic aberrations, and briefly describe mutations important in melanoma pathogenesis. We also describe massively parallel sequencing and discuss advances that have been made in the identification of novel driver mutations in melanoma tumors. Finally, the application of these techniques with respect to clinical testing is addressed, specifically as they pertain to the development and advancement of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62:6997–7000.

    CAS  PubMed  Google Scholar 

  2. Cappuzzo F. EGFR FISH versus mutation: different tests, different end-points. Lung Cancer. 2008;60:160–5.

    PubMed  Google Scholar 

  3. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    CAS  PubMed  Google Scholar 

  5. Plesec TP, Hunt JL. KRAS mutation testing in colorectal cancer. Adv Anat Pathol. 2009;16:196–203.

    CAS  PubMed  Google Scholar 

  6. Howlader N NA, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations), National Cancer Institute. Bethesda, MD, http.//seer.cancer.gov/csr/1975_2009_pops09/, based on November 2011 SEER data submission, posted to the SEER web site, April 2012. 2012.

    Google Scholar 

  7. Dhomen N, Marais R. BRAF signaling and targeted therapies in melanoma. Hematol Oncol Clin North Am. 2009;23:529–45, ix.

    PubMed  Google Scholar 

  8. Fecher LA, Amaravadi R, Schuchter LM. Effectively targeting BRAF in melanoma: a formidable challenge. Pigment Cell Melanoma Res. 2008;21:410–1.

    PubMed  Google Scholar 

  9. Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma. Curr Opin Oncol. 2008;20:183–9.

    CAS  PubMed  Google Scholar 

  10. Ji Z, Flaherty KT, Tsao H. Molecular therapeutic approaches to melanoma. Mol Aspects Med. 2010;31:194–204.

    CAS  PubMed  Google Scholar 

  11. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    CAS  PubMed  Google Scholar 

  12. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305:2327–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29:2904–9.

    CAS  PubMed  Google Scholar 

  15. Hodi FS, Friedlander P, Corless CL, et al Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol. 2008;26:2046–51.

    CAS  PubMed  Google Scholar 

  16. Ivan D, Niveiro M, Diwan AH, et al. Analysis of protein tyrosine kinases expression in the melanoma metastases of patients treated with Imatinib Mesylate (STI571, Gleevec). J Cutan Pathol. 2006;33:280–5.

    PubMed  Google Scholar 

  17. Kim KB, Eton O, Davis DW, et al. Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br J Cancer. 2008;99:734–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Lutzky J, Bauer J, Bastian BC. Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res. 2008;21:492–3.

    PubMed  Google Scholar 

  19. Woodman SE, Trent JC, Stemke-Hale K, et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther. 2009;8:2079–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44:1006–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B. 2001;63:8–18.

    CAS  PubMed  Google Scholar 

  24. Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight. Adv Exp Med Biol. 2008;624:89–103.

    PubMed  Google Scholar 

  25. Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res. 2005;571:19–31.

    CAS  PubMed  Google Scholar 

  26. Daya-Grosjean L, Sarasin A. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors. Mutat Res. 2005;571:43–56.

    CAS  PubMed  Google Scholar 

  27. de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B. 2001;63:19–27.

    CAS  PubMed  Google Scholar 

  28. Nouspikel T. DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility. Cell Mol Life Sci. 2009;66:994–1009.

    CAS  PubMed  Google Scholar 

  29. Shuck SC, Short EA, Turchi JJ. Eukaryotic nucleotide excision repair. from understanding mechanisms to influencing biology. Cell Res. 2008;18:64–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fousteri M, Mullenders LH. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 2008;18:73–84.

    CAS  PubMed  Google Scholar 

  31. Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 2008;9:958–70.

    CAS  PubMed  Google Scholar 

  32. Chin L, Garraway LA, Fisher DE. Malignant melanoma. genetics and therapeutics in the genomic era. Genes Dev. 2006;20:2149–82.

    CAS  PubMed  Google Scholar 

  33. Miller AJ, Mihm MC Jr. Melanoma. N Engl J Med. 2006;355:51–65.

    CAS  PubMed  Google Scholar 

  34. Omholt K, Platz A, Kanter L, et al. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res. 2003;9:6483–8.

    CAS  PubMed  Google Scholar 

  35. Greshock J, Nathanson K, Medina A, et al. Distinct patterns of DNA copy number alterations associate with BRAF mutations in melanomas and melanoma-derived cell lines. Genes Chromosomes Cancer. 2009;48:419–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Long GV, Menzies AM, Nagrial AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29:1239–46.

    PubMed  Google Scholar 

  37. Menzies AM, Haydu LE, Visintin L, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18:3242–9.

    CAS  PubMed  Google Scholar 

  38. Ellerhorst JA, Greene VR, Ekmekcioglu S, et al. Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res. 2011;17:229–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379:1893–901.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Long GV, Trefzer U, Davies MA, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:1087–95.

    CAS  PubMed  Google Scholar 

  41. Dahlman KB, Xia J, Hutchinson K, et al. BRAF(L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2012;2:791–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Edlundh-Rose E, Egyhazi S, Omholt K, et al. NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res. 2006;16:471–8.

    CAS  PubMed  Google Scholar 

  43. Goel VK, Lazar AJ, Warneke CL, et al. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol. 2006;126:154–60.

    CAS  PubMed  Google Scholar 

  44. van ’t Veer LJ, Burgering, Versteeg R, et al. N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol Cell Biol. 1989;9:3114–6.

    Google Scholar 

  45. Russo AE, Torrisi E, Bevelacqua Y, et al. Melanoma. molecular pathogenesis and emerging target therapies (Review). Int J Oncol. 2009;34:1481–9.

    CAS  PubMed  Google Scholar 

  46. Saldanha G, Potter L, Daforno P, et al. Cutaneous melanoma subtypes show different BRAF and NRAS mutation frequencies. Clin Cancer Res. 2006;12:4499–505.

    CAS  PubMed  Google Scholar 

  47. Ball NJ, Yohn JJ, Morelli JG, et al. Ras mutations in human melanoma: a marker of malignant progression. J Invest Dermatol. 1994;102:285–90.

    CAS  PubMed  Google Scholar 

  48. Devitt B, Liu W, Salemi R, et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res. 2011;24:666–72.

    CAS  PubMed  Google Scholar 

  49. Jakob JA, Bassett RL Jr., Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118:4014–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ascierto PA, Schadendorf D, Berking C, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013;14:249–56.

    CAS  PubMed  Google Scholar 

  51. Britten CD. PI3K and MEK inhibitor combinations. examining the evidence in selected tumor types. Cancer Chemother Pharmacol. 2013;71:1395–409.

    CAS  PubMed  Google Scholar 

  52. Greger JG, Eastman SD, Zhang V, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012;11:909–20.

    CAS  PubMed  Google Scholar 

  53. Posch C, Moslehi H, Feeney L, et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci U S A. 2013;110:4015–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Curtin JA, Busam K, Pinkel D, et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    CAS  PubMed  Google Scholar 

  55. Grichnik JM. Kit and melanocyte migration. J Invest Dermatol. 2006;126:945–7.

    CAS  PubMed  Google Scholar 

  56. Stefansson B, Brautigan DL. Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Cell Cycle. 2007;6:1386–92.

    CAS  PubMed  Google Scholar 

  57. Stefansson B, Ohama T, Daugherty AE, et al. Protein phosphatase 6 regulatory subunits composed of ankyrin repeat domains. Biochemistry. 2008;47:1442–51.

    CAS  PubMed  Google Scholar 

  58. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

    CAS  PubMed  Google Scholar 

  59. Berger MF, Hodis E, Heffernan TP, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 2012;485:502–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Gartner JJ, Davis S, Wei X, et al. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genomics. 2012;13:505.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Nikolaev SI, Rimoldi D, Iseli C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 2011;44:133–9.

    PubMed  Google Scholar 

  62. Wei X, Walia V, Lin JC, et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet. 2011;43:442–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Dufort S, Richard MJ, de Fraipont F. Pyrosequencing method to detect KRAS mutation in formalin-fixed and paraffin-embedded tumor tissues. Anal Biochem. 2009;391:166–8.

    CAS  PubMed  Google Scholar 

  64. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94:441–8.

    CAS  PubMed  Google Scholar 

  65. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Marsh S. Pyrosequencing applications. Methods Mol Biol. 2007;373:15–24.

    CAS  PubMed  Google Scholar 

  67. Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.

    CAS  PubMed  Google Scholar 

  68. Vasudevan KM, Barbie DA, Davies MA, et al. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell. 2009;16:21–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hayden EC. Personalized cancer therapy gets closer. Nature. 2009;458:131–2.

    CAS  PubMed  Google Scholar 

  70. Hurst CD, Zuiverloon TC, Hafner C, et al. A SNaPshot assay for the rapid and simple detection of four common hotspot codon mutations in the PIK3CA gene. BMC Res Notes. 2009;2:66.

    PubMed Central  PubMed  Google Scholar 

  71. Ragoussis J, Elvidge GP, Kaur K, et al. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. PLoS Genet. 2006;2:e100.

    PubMed Central  PubMed  Google Scholar 

  72. MacConaill LE, Campbell CD, Kehoe SM, et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One. 2009;4:e7887.

    PubMed Central  PubMed  Google Scholar 

  73. Weber BL. Cancer genomics. Cancer Cell. 2002;1:37–47.

    CAS  PubMed  Google Scholar 

  74. Look AT, Hayes FA, Shuster JJ, et al. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol. 1991;9:581–91.

    CAS  PubMed  Google Scholar 

  75. Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet. 2009;18:R1–8.

    CAS  PubMed  Google Scholar 

  76. Kuiper RP, Ligtenberg MJ, Hoogerbrugge N, et al. Germline copy number variation and cancer risk. Curr Opin Genet Dev. 2010;20:282–9.

    CAS  PubMed  Google Scholar 

  77. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Sapkota Y, Ghosh S, Lai R, et al. Germline DNA copy number aberrations identified as potential prognostic factors for breast cancer recurrence. PLoS One. 2013;8:e53850.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Gaiser T, Kutzner H, Palmedo G, et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol. 2010;23:413–9.

    CAS  PubMed  Google Scholar 

  80. Lazar V, Ecsedi S, Vizkeleti L, et al. Marked genetic differences between BRAF and NRAS mutated primary melanomas as revealed by array comparative genomic hybridization. Melanoma Res. 2012;22:202–14.

    CAS  PubMed  Google Scholar 

  81. Gast A, Scherer D, Chen B, et al. Somatic alterations in the melanoma genome. a high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer. 2010;49:733–45.

    CAS  PubMed  Google Scholar 

  82. Jonsson G, Dahl C, Staaf J, et al. Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene. 2007;26:4738–48.

    CAS  PubMed  Google Scholar 

  83. Stark M, Hayward N. Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. Cancer Res. 2007;67:2632–42.

    CAS  PubMed  Google Scholar 

  84. Morrissette JJ, Bagg A. Acute myeloid leukemia: conventional cytogenetics, FISH, and moleculocentric methodologies. Clin Lab Med. 2011;31:659–86, x.

    PubMed  Google Scholar 

  85. Pepper C, Majid A, Lin TT, et al. Defining the prognosis of early stage chronic lymphocytic leukaemia patients. Br J Haematol. 2011.

    Google Scholar 

  86. Just PA, Cazes A, Audebourg A, et al. Histologic subtypes, immunohistochemistry, FISH or molecular screening for the accurate diagnosis of ALK-rearrangement in lung cancer: a comprehensive study of Caucasian non-smokers. Lung Cancer. 2011.

    Google Scholar 

  87. Senetta R, Paglierani M, Massi D. Fluorescence in-situ hybridization analysis for melanoma diagnosis. Histopathology. 2011.

    Google Scholar 

  88. Hossain D, Qian J, Adupe J, et al. Differentiation of melanoma and benign nevi by fluorescence in-situ hybridization. Melanoma Res. 2011;21:426–30.

    PubMed  Google Scholar 

  89. Hogervorst FB, Nederlof PM, Gille JJ, et al. Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res. 2003;63:1449–53.

    CAS  PubMed  Google Scholar 

  90. Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57.

    PubMed Central  PubMed  Google Scholar 

  91. Bruno W, Ghiorzo P, Battistuzzi L, et al. Clinical genetic testing for familial melanoma in Italy: a cooperative study. J Am Acad Dermatol. 2009;61:775–82.

    PubMed  Google Scholar 

  92. Kozlowski P, Jasinska AJ, Kwiatkowski DJ. New applications and developments in the use of multiplex ligation-dependent probe amplification. Electrophoresis. 2008;29:4627–36.

    CAS  PubMed  Google Scholar 

  93. Palma MD, Domchek SM, Stopfer J, et al. The relative contribution of point mutations and genomic rearrangements in BRCA1 and BRCA2 in high-risk breast cancer families. Cancer Res. 2008;68:7006–14.

    PubMed Central  PubMed  Google Scholar 

  94. Stevens-Kroef M, Simons A, Gorissen H, et al. Identification of chromosomal abnormalities relevant to prognosis in chronic lymphocytic leukemia using multiplex ligation-dependent probe amplification. Cancer Genet Cytogenet. 2009;195:97–104.

    CAS  PubMed  Google Scholar 

  95. Dopierala J, Damato BE, Lake SL, et al. Genetic heterogeneity in uveal melanoma assessed by multiplex ligation-dependent probe amplification. Invest Ophthalmol Vis Sci. 2010;51:4898–905.

    PubMed  Google Scholar 

  96. Cesinaro AM, Schirosi L, Bettelli S, et al. Alterations of 9p21 analysed by FISH and MLPA distinguish atypical spitzoid melanocytic tumours from conventional Spitz’s nevi but do not predict their biological behaviour. Histopathology. 2010;57:515–27.

    PubMed  Google Scholar 

  97. Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol. 2011;136:527–39.

    CAS  PubMed  Google Scholar 

  98. Wagle N, Berger MF, Davis MJ, et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2012;2:82–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Hadd AG, Houghton J, Choudhary A, et al. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn. 2013;15:234–47.

    CAS  PubMed  Google Scholar 

  100. Holley T, Lenkiewicz E, Evers L, et al. Deep clonal profiling of formalin fixed paraffin embedded clinical samples. PLoS One. 2012;7:e50586.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Menon R, Deng M, Boehm D, et al. Exome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue. Int J Mol Sci. 2012;13:8933–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Asan, Xu Y, Jiang H, et al. Comprehensive comparison of three commercial human whole-exome capture platforms. Genome Biol. 2011;12:R95.

    Google Scholar 

  103. Clark MJ, Chen R, Lam HY, et al. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol. 2011;29:908–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Parla JS, Iossifov I, Grabill I, et al. A comparative analysis of exome capture. Genome Biol. 2011;12:R97.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Sulonen AM, Ellonen P, Almusa H, et al. Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol. 2011;12:R94.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    PubMed Central  PubMed  Google Scholar 

  108. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Ye K, Schulz MH, Long Q, et al. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25:2865–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Nord AS, Lee M, King MC, et al. Accurate and exact CNV identification from targeted high-throughput sequence data. BMC Genomics. 2011;12:184.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2. somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    PubMed Central  PubMed  Google Scholar 

  113. Chang X, Wang K. wANNOVAR: annotating genetic variants for personal genomes via the web. J Med Genet. 2012;49:433–6.

    PubMed Central  PubMed  Google Scholar 

  114. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Liu X, Jian X, Boerwinkle E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32:894–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res, 2010;20:110–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Schwarz JM, Rodelsperger C, Schuelke M, et al. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.

    CAS  PubMed  Google Scholar 

  119. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    CAS  PubMed  Google Scholar 

  120. Karlsson R, Pedersen ED, Wang Z, et al. Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009;1796:91–8.

    CAS  PubMed  Google Scholar 

  121. Ghai R, Mobli M, Norwood SJ, et al. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc Natl Acad Sci U S A. 2011;108:7763–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Cully M, Shiu J, Piekorz RP, et al. Transforming acidic coiled coil 1 promotes transformation and mammary tumorigenesis. Cancer Res. 2005;65;10363–70.

    CAS  PubMed  Google Scholar 

  123. Li M, Zhao H, Zhang X, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011;43:828–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Sivaram MV, Wadzinski TL, Redick SD, et al. Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J. 2009;28:902–14.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine L. Nathanson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, M., Nathanson, K. (2015). Molecular Diagnostics and Tumor Mutational Analysis. In: Sullivan, R. (eds) BRAF Targets in Melanoma. Cancer Drug Discovery and Development, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2143-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2143-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2142-3

  • Online ISBN: 978-1-4939-2143-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics