Skip to main content

Gonadotropin in Assisted Reproduction: An Evolution Perspective

  • Chapter
  • First Online:
  • 1770 Accesses

Abstract

The introduction of gonadotropin therapy in medical practice represented an essential upgrade in infertility treatment. Follicle stimulation hormone (FSH) has a major role in follicular recruitment and growth. Improvements in purification techniques and recombinant technology have led to the two main FSH currently available: highly purified human menopausal gonadotropin (HP-hMG), with 1:1 ratio of FSH/luteinizing hormone (LH) activity; and recombinant human FSH (rec-hFSH), with only FSH activity. Both of them are safe to use and have overall similar clinical efficacy. However, rec-hFSH is purer than HP-HMG. Moreover, the introduction of filled-by-mass technology virtually eliminated batch-to-batch variation, enabled FSH accurate dosing and the development of novel prefilled pen devices that made treatment more patient-friendly. LH supplementation has also been introduced in controlled ovarian stimulation (COH), initally in hypogonadotropic hypogonadism women and then, in older patients (≥ 35 years), poor and slow/hypo responders and those with deeply suppressed endogenous LH. At present, three formulations with LH activity are available (i) hMG in which LH activity is given by hCG, (ii) recombinant human LH (rec-hLH), and (iii) fixed combination of rec-hFSH and rec-hLH at 2:1 ratio. Recent advances in the therapeutical options for COH include the introduction of the long acting FSH and the new family of pen injectors. Research now focuses on the development of small orally bioactive agonists of FSH and LH receptors that may in the future replace gonadotropin injections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beall SA, DeCherney A. History and challenges surrounding ovarian stimulation in the treatment of infertility. Fertil Steril. 2012;97(4):785–801.

    Google Scholar 

  2. Lunenfeld B. Historical perspectives in gonadotrophin therapy. Human Reprod Update. 2004;10(6):453–67.

    Google Scholar 

  3. Practice Committee of American Society for Reproductive Medicine, Birmingham, Alabama. Gonadotropin preparations: past, present, and future perspectives. Fertil Steril. 2008;90(Suppl 5):S13–S20.

    Google Scholar 

  4. Howles CM. Genetic engineering of human FSH (Gonal-F). Hum Reprod Update. 1996;2(2):172–91.

    Google Scholar 

  5. Esteves SC, Schertz JC, Verza S Jr, Schneider DT, Zabaglia SF. A comparison of menotropin, highly-purified menotropin and follitropin alfa in cycles of intracytoplasmic sperm injection. Reprod Biol Endocrinol. 2009;7:111.

    Google Scholar 

  6. Driebergen R, Baer G. Quantification of follicle stimulating hormone (follitropin alfa): is in vivo bioassay still relevant in the recombinant age? Curr Med Res Opin. 2003;19(1):41–6.

    Google Scholar 

  7. Martinez G, Sanguineti F, Sepulveda J, Dorey J, Arici A, Patrizio P. A comparison between follitropin α filled by mass and follitropin a filled by bioassay in the same egg donors. Reprod Biomed Online. 2011;22(Suppl 1):S20–2.

    Google Scholar 

  8. Bosch E. Recombinant human follicular stimulating hormone and recombinant human luteinizing hormone in a 2:1 ratio combination. Pharmacological characteristics and clinical applications. Expert Opin Biol Ther. 2010;10(6):1001–9.

    Google Scholar 

  9. Verbost P, Sloot WN, Rose UM, de Leeuw R, Hanssen RG, Verheijden GF. Pharmacologic profiling of corifollitropin alfa, the first developed sustained follicle stimulant. Eur J Pharmacol. 2011;651(1–3):227–33.

    Google Scholar 

  10. Christen M, Schertz JC, Arriagada P, Keitel J, Müller H. The redesigned follitropin α pen injector for infertility treatment. Expert Opin Drug Deliv. 2011;8(6):833–9.

    Google Scholar 

  11. Saunders H, Schertz JC, Hecker C, Lang B, Arriagada P. The recombinant human chorionic gonadotropin prefilled pen: results of patient and nurse human factors usability testing. Expert Opin Drug Deliv. 2012;9(8):893–900.

    Google Scholar 

  12. Speroff L, Fritz MA. Neuroendocrinology. In: Speroff L, Fritz MA, editors. Clinical gynecologic endocrinology and infertility. Philadelphia: Lippincott Williams & Wilkins; 2005. pp. 295–6.

    Google Scholar 

  13. Cole LA, Khanlian SA, Muller CY. Detection of perimenopause or postmenopause human chorionic gonadotropin: an unnecessary source of alarm. Am J Obstet Gynecol. 2008;198(3):275. e1–7.

    Google Scholar 

  14. Cole LA, Khanlian SA, Muller CY. Normal production of human chorionic gonadotropin in perimenopausal and menopausal women and after oophorectomy. Int J Gynecol Cancer. 2009;19(9):1556–9.

    Google Scholar 

  15. Hsueh AJ, Adashi EY, Jones PB, Welsh TH Jr. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984;5(1):76–127.

    Google Scholar 

  16. Vegetti W, Alagna F. FSH and folliculogenesis: from physiology to ovarian stimulation. Reprod Biomed Online. 2006;12(6):684–94.

    Google Scholar 

  17. Jeppesen JV, Kristensen SG, Nielsen ME, et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab. 2012;97(8):E1524–31.

    Google Scholar 

  18. Speroff L, Fritz MA. Hormone biosynthesis, metabolism, and mechanisms of action. Stereidogenesis. In: Speroff L, Fritz MA, editors. Clinical gynecologic endocrinology and infertility. Philadelphia: Lippincott Williams & Wilkins; 2005. pp. 109–16.

    Google Scholar 

  19. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140(4):489–504.

    Google Scholar 

  20. Alviggi C, Mollo A, Clarizia R, De Placido G. Exploiting LH in ovarian stimulation. Reprod Biomed Online. 2006;12(2):221–33.

    Google Scholar 

  21. Speroff L, Fritz MA. Regulation of the menstrual cycle. In: Speroff L, Fritz MA, editors. Cinical gynecologic endocrinology and infertility. Philadelphia: Lippincott Williams & Wilkins; 2005. pp. 348–83.

    Google Scholar 

  22. Gougeon A. Dynamics of human follicular growth: morphologic, dynamic and functional aspects. In: Leung PKC, Addashi EY, editors. The ovary. San Diego: Elsevier Academic; 2004. pp. 25–43.

    Google Scholar 

  23. Zeleznik AJ. The physiology of follicle selection. Reprod Biol Endocrinol. 2004;16(2):31.

    Google Scholar 

  24. Oktay K, Briggs DA, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82(11):3748–51.

    Google Scholar 

  25. Brown JB. Pituitary control of ovarian function-concepts derived from gonadotrophin therapy. Aust N Z J Obstet Gynaecol. 1978;18(1):46–54.

    Google Scholar 

  26. Pache TD, Wladimiroff JW, de Jong FH, Hop WC, Fauser BC. Growth patterns of nondominant ovarian follicles during the normal menstrual cycle. Fertil Steril. 1990;54(4):638–42.

    Google Scholar 

  27. Falck B. Site of production of oestrogen in rat ovary as studied in microtransplants. Acta Physiol Scand Suppl. 1959;47(163):1–101.

    Google Scholar 

  28. Miller WL. Steroidogenic enzymes. Endocr Dev. 2008;13:1–18.

    Google Scholar 

  29. Wickenheisser JK, Nelson-DeGrave VL, McAllister JM. Human ovarian theca cells in culture. Trends Endocrinol Metab. 2006;17(2):65–71.

    Google Scholar 

  30. Smyth CD, Miró F, Whitelaw PF, Howles CM, Hillier SG. Ovarian thecal/interstitial androgen synthesis is enhanced by a follicle-stimulating hormone-stimulated paracrine mechanism. Endocrinology. 1993;133(4):1532–8.

    Google Scholar 

  31. Whitelaw PF, Smyth CD, Howles CM, Hillier SG. Cell-specific expression of aromatase and LH receptor mRNAs in rat ovary. J Mol Endocrinol. 1992;9(3):309–12.

    Google Scholar 

  32. Kol S, Adashi EY. Intraovarian factors regulating ovarian function. Curr Opin Obstet Gynecol. 1995;7(3):209–13.

    Google Scholar 

  33. Zeleznik AJ, Hillier SG. The role of gonadotropins in the selection of the preovulatory follicle. Clin Obstet Gynecol. 1984;27(4):927–40.

    Google Scholar 

  34. Goff AK, Armstrong DT. Stimulatory action of gonadotropins and prostaglandins on adenosine-3′,5′-monophosphate production by isolated rat granulosa cells. Endocrinology. 1977;101(5):1461–7.

    Google Scholar 

  35. Campbell BK, Dobson H, Baird DT, Scaramuzzi RJ. Examination of the relative role of FSH and LH in the mechanism of ovulatory follicle selection in sheep. J Reprod Fertil. 1999;117(2):355–67.

    Google Scholar 

  36. Sullivan MW, Stewart-Akers A, Krasnow JS, Berga SL, Zeleznik AJ. Ovarian responses in women to recombinant follicle-stimulating hormone and luteinizing hormone (LH): a role for LH in the final stages of follicular maturation. J Clin Endocrinol Metab. 1999;84(1):228–32.

    Google Scholar 

  37. Pauerstein CJ, Eddy CA, Croxatto HD, Hess R, Siler-Khodr TM, Croxatto HB. Temporal relationships of estrogen, progesterone, and luteinizing hormone levels to ovulation in women and infrahuman primates. Am J Obstet Gynecol. 1978;130(8):876–86.

    Google Scholar 

  38. Fritz MA, McLachlan RI, Cohen NL, Dahl KD, Bremmer WJ, Soules MR. Onset and characteristics of the midcycle surge in bioactive and immunoactive luteinizing hormone secretion in normal women: influence of physiological variations in periovulatory ovarian steorid hormone secretion. J Clin Endocrinol Metab. 1992;75(2):489–93.

    Google Scholar 

  39. Young JR, Jaffe RB. Strength-duration characteristics of estrogen effects on gonadotropin response to gonadotropin-releasing hormone in women. II. Effects of varying concentrations of estradiol. J Clin Endocrinol Metab. 1976;42(3):432–42.

    Google Scholar 

  40. Coutts JRT, Gaukroger JM, Kader AS, et al. Steroidogenesis by the Human Graafian Follicle. In: Coutts JRT, editor. Functional morphology of the human ovary. Lancaster: MTP; 1981. pp. 56–72.

    Google Scholar 

  41. Filicori M, Cognigni GE, Taraborrelli S, et al. Luteinizing hormone activity supplementation enhances follicle-stimulating hormone efficacy and improves ovulation induction outcome. Clin Endocrinol Metab. 1999;84(8):2659–63.

    Google Scholar 

  42. Couzinet B, Brailly S, Bouchard P, Schaison G. Progesterone stimulates luteinizing hormone secretion by acting directly on the pituitary. J Clin Endocrinol Metab. 1992;74(2):374–8.

    Google Scholar 

  43. Liu JH, Yen SSC. Induction of midcycle gonadotropin surge by ovarian steroids in women: a critical evaluation. J Clin Endocrinol Metab. 1983;57(4):797–802.

    Google Scholar 

  44. Hoff JD, Quigley ME, Yen SS. Hormonal dynamics at midcycle: a reevaluation. J Clin Endocrinol Metab. 1983;57(4):792–6.

    Google Scholar 

  45. McCord LA, Li F, Rosewell KL, Brännström M, Curry TE. Ovarian expression and regulation of the stromelysins during the periovulatory period in the human and the rat. Biol Reprod. 2012;86(3):78.

    Google Scholar 

  46. Peluffo MC, Murphy MJ, Baughman ST, Stouffer RL, Hennebold JD. Systematic analysis of protease gene expression in the rhesus macaque ovulatory follicle: metalloproteinase involvement in follicle rupture. Endocrinology. 2011;152(10):3963–74.

    Google Scholar 

  47. Speroff L, Fritz MA. The ovary: embryology and development. In: Speroff L, Fritz MA, editors. Clinical gynecologic endocrinology and infertility. Philadelphia: Lippincott Williams & Wilkins; 2005. pp. 215–16.

    Google Scholar 

  48. Lapthorn AJ, Harris DC, Littlejohn A, et al. Crystal structure of human chorionic gonadotropin. Nature. 1994;369(6480):455–61.

    Google Scholar 

  49. Vaitukaitis JL, Ross GT, Braunstein GD, Rayford PL. Gonadotropins and their subunits: basic and clinical studies. Recent Prog Horm Res. 1976;32:289–331.

    Google Scholar 

  50. Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel SC. Immunological and biological potencies of the different molecular species of gonadotrophins. Hum Reprod. 1988;3(4):491–501.

    Google Scholar 

  51. Rozell TG, Okrainetz RJ. FSH: one hormone with multiple forms, or a family of multiples hormones. In: Chedrese PJ, editor. Reproductive endocrinology: a molecular approach. New York: Springer Science + Business Media; 2009. pp. 145–60.

    Google Scholar 

  52. Wide L, Naessén T, Sundström-Poromaa I, Eriksson K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J Clin Endocrinol Metab. 2007;92(11):4410–7.

    Google Scholar 

  53. Ulloa-Aguirre A, Midgley AR Jr, Beitins IZ, Padmanabhan V. Follicle-stimulating isohormones: characterization and physiological relevance. Endocr Rev. 1995;16(6):765–87.

    Google Scholar 

  54. Green ED, Baenziger JU. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988;263(1):25–35.

    Google Scholar 

  55. Smith PL, Baenziger JU. Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase. Proc Natl Acad Sci U S A. 1992;89(1):329–33.

    Google Scholar 

  56. Anobile CJ, Talbot JA, McCann SJ, Padmanabhan V, Robertson WR. Glycoform composition of serum gonadotrophins through the normal menstrual cycle and in the post-menopausal state. Mol Hum Reprod. 1998;4(7):631–9.

    Google Scholar 

  57. Fiete D, Srivastava V, Hindsgaul O, Baenziger JU. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell. 1991;67(6):1103–10.

    Google Scholar 

  58. Wide L, Eriksson K, Sluss PM, Hall JE. Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J Clin Endocrinol Metab. 2009;94(3):958–64.

    Google Scholar 

  59. Combarnous Y. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocr Rev. 1992;13(4):670–91.

    Google Scholar 

  60. Galway AB, Hsueh AJ, Keene JL, Yamoto M, Fauser BC, Boime I. In vitro and in vivo bioactivity of recombinant human follicle-stimulating hormone and partially deglycosylated variants secreted by transfected eukaryotic cell lines. Endocrinology. 1990;127(1):93–100.

    Google Scholar 

  61. Fox KM, Dias JA, Van Roey P. Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol. 2001;15(3):378–89.

    Google Scholar 

  62. Campbell RK. Molecular pharmacology of gonadotropins. Endocrine. 2005;26(3):291–6.

    Google Scholar 

  63. Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971;246(5):1461–7.

    Google Scholar 

  64. Padmanabhan V, Lang LL, Sonstein J, Kelch RP, Beitins IZ. Modulation of serum follicle-stimulating hormone bioactivity and isoform distribution by estrogenic steroids in normal women and in gonadal dysgenesis. J Clin Endocrinol Metab. 1988;67(3):465–73.

    Google Scholar 

  65. Zambrano E, Olivares A, Mendez JP, et al. Dynamics of basal and gonadotropin-releasing hormone-releasable serum follicle-stimulating hormone charge isoform distribution throughout the human menstrual cycle. J Clin Endocrinol Metab. 1995;80(5):1647–56.

    Google Scholar 

  66. Wide L, Bakos O. More basic forms of both human follicle-stimulating hormone and luteinizing hormone in serum at midcycle compared with the follicular or luteal phase. J Clin Endocrinol Metab. 1993;76(4):885–9.

    Google Scholar 

  67. Midgley AR Jr, Pierce GB Jr. Immunohistochemical localization of human chorionic gonadotropin. J Exp Med. 1962;115:289–94.

    Google Scholar 

  68. Hamblen EC, Davis CD, Durham NC. Treatment of hypo-ovarianism by the sequential and cyclic administration of equine and chorionic gonadotropins-so-called one-two cyclic gonadotropic therapy Summary of 5 years’ results. Am J Obstet Gynecol. 1945;50:137–46.

    Google Scholar 

  69. Hamblen EC. The clinical evaluation of ovarian responses to gonadotropic therapy. Endocrinology. 1939;24(6):848–66.

    Google Scholar 

  70. Mazer C, Ravetz E. The effect of combined administration of chorionic gonadotropin and pituitary synergist on the human ovary. Am J Obstet Gynaecol. 1941;41:474–588.

    Google Scholar 

  71. Maddock WO, Leach RB, Tokuyama I, Paulsen CA, Roy WR. Effects of hog pituitary follicle-stimulating hormone in women: antihormone formation and inhibition of ovarian function. J Clin Endocrinol Metab. 1956;16(4):433–48.

    Google Scholar 

  72. Buxton CL, Hermann W. Induction of ovulation in the human with human gonadotropins. Yale J Biol Med. 1960;33:145–7.

    Google Scholar 

  73. Gemzell CA. Induction of ovulation with human pituitary gonadotrophins. Fertil Steril. 1962;13:153–68.

    Google Scholar 

  74. Giudice E, Crisci C, Eshkol A, Papoian R. Composition of commercial gonadotrophin preparations extracted from human post-menopausal urine: characterization of non-gonadotrophin proteins. Hum Reprod. 1994;9(12):2291–9.

    Google Scholar 

  75. Alviggi C, Revelli A, Anserini P, et al. A prospective, randomised, controlled clinical study on the assessment of tolerability and of clinical efficacy of Merional (hMG-IBSA) administered subcutaneously versus Merional administered intramuscularly in women undergoing multifollicular ovarian stimulation in an ART programme (IVF). Reprod Biol Endocrinol. 2007;5:45.

    Google Scholar 

  76. Platteau P, Laurent E, Albano C, et al. An open, randomized single-centre study to compare the efficacy and convenience of follitropin beta administered by a pen device with follitropin alpha administered by a conventional syringe in women undergoing ovarian stimulation for IVF/ICSI. Hum Reprod. 2003;18(6):1200–4.

    Google Scholar 

  77. Howles CM. Genetic engineering of human FSH (Gonal-F). Hum Reprod Update. 1996;2(2):172–91.

    Google Scholar 

  78. Olijve W, de Boer W, Mulders JW, van Wezenbeek PM. Molecular biology and biochemistry of human recombinant follicle stimulating hormone (Puregon). Mol Hum Reprod. 1996;2(5):371–82.

    Google Scholar 

  79. de Leeuw R, Mulders J, Voortman G, Rombout F, Damm J, Kloosterboer L. Structure-function relationship of recombinant follicle stimulating hormone (Puregon). Mol Hum Reprod. 1996;2(5):361–9.

    Google Scholar 

  80. Horsman G, Talbot JA, McLoughlin JD, Lambert A, Robertson WR. A biological, immunological and physico-chemical comparison of the current clinical batches of the recombinant FSH preparations Gonal-F and Puregon. Hum Reprod. 2000;15(9):1898–902.

    Google Scholar 

  81. Orvieto R, Nahum R, Rabinson J, Ashkenazi J, Anteby EY, Meltcer S. Follitropin-alpha (Gonal-F) versus follitropin-beta (Puregon) in controlled ovarian hyperstimulation for in vitro fertilization: is there any difference? Fertil Steril. 2009;91(Suppl 4):1522–5.

    Google Scholar 

  82. Fauser BC, van Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev. 1997;18(1):71–106.

    Google Scholar 

  83. Fauser BC, Mannaerts BM, Devroey P, Leader A, Boime I, Baird DT. Advances in recombinant DNA technology: corifollitropin alfa, a hybrid molecule with sustained follicle-stimulating activity and reduced injection frequency. Hum Reprod Update. 2009;15(3):309–21.

    Google Scholar 

  84. Birken S, Canfield RE. Isolation and amino acid sequence of COOH-terminal fragments from the beta subunit of human choriogonadotropin. J Biol Chem. 1977;252(15):5386–92.

    Google Scholar 

  85. Kessler MJ, Mise T, Ghai RD, Bahl OP. Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979;254(16):7909–14.

    Google Scholar 

  86. Fares FA, Suganuma N, Nishimori K, LaPolt PS, Hsueh AJ, Boime I. Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin beta subunit to the follitropin beta subunit. Proc Natl Acad Sci U S A. 1992;89(10):4304–8.

    Google Scholar 

  87. Balen AH, Mulders AG, Fauser BC, et al. Pharmacodynamics of a single low dose of long-acting recombinant follicle- stimulating hormone (FSH-carboxy terminal peptide, corifollitropin alfa) in women with World Health Organization group II anovulatory infertility. J Clin Endocrinol Metab. 2004;89(12):6297–304.

    Google Scholar 

  88. Dhillon S, Keating GM. Lutropin alfa. Drugs. 2008;68(11):1529–40.

    Google Scholar 

  89. Bosdou JK, Venetis CA, Kolibianakis EM, et al. The use of androgens or androgen-modulating agents in poor responders undergoing in vitro fertilization: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(2):127–45.

    Google Scholar 

  90. Hill MJ, Levens ED, Levy G, et al. The use of recombinant luteinizing hormone in patients undergoing assisted reproductive techniques with advanced reproductive age: a systematic review and meta-analysis. Fertil Steril. 2012;97(5):1108–14.

    Google Scholar 

  91. Bassett RM, Driebergen R. Continued improvements in the quality and consistency of follitropin alfa, recombinant human FSH. Reprod Biomed Online. 2005;10(2):169–77.

    Google Scholar 

  92. le Cotonnec JY, Porchet HC, Beltrami V, Munafo A. Clinical pharmacology of recombinant human luteinizing hormone: Part I. Pharmacokinetics after intravenous administration to healthy female volunteers and comparison with urinary human luteinizing hormone. Fertil Steril. 1998;69(2):189–94.

    Google Scholar 

  93. Grøndahl ML, Borup R, Lee YB, Myrhøj V, Meinertz H, Sørensen S. Differences in gene expression of granulosa cells from women undergoing controlled ovarian hyperstimulation with either recombinant follicle-stimulating hormone or highly purified human menopausal gonadotropin. Fertil Steril. 2009;91(5):1820–30.

    Google Scholar 

  94. Menon KM, Munshi UM, Clouser CL, Nair AK. Regulation of luteinizing hormone/human chorionic gonadotropin receptor expression: a perspective. Biol Reprod. 2004;70(4):861–6.

    Google Scholar 

  95. Bosch E, Vidal C, Labarta E, Simon C, Remohi J, Pellicer A. Highly purified hMG versus recombinant FSH in ovarian hyperstimulation with GnRH antagonists-a randomized study. Hum Reprod. 2008;23(10):2346–51.

    Google Scholar 

  96. Venetis CA, Kolibianakis EM, Papanikolaou E, Bontis J, Devroey P, Tarlatzis BC. Is progesterone elevation on the day of human chorionic gonadotrophin administration associated with the probability of pregnancy in in vitro fertilization? A systematic review and meta-analysis. Hum Reprod Update. 2007;13(4):343–55.

    Google Scholar 

  97. Picard M, Rossier C, Papasouliotis O, Lugan I. Bioequivalence of recombinant human FSH and recombinant human LH in a fixed 2:1 combination: two phase I, randomised, crossover studies. Curr Med Res Opin. 2008;24(4):1199–208.

    Google Scholar 

  98. Humaidan P, Kol S, Papanikolaou EG. Copenhagen GnRH agonist triggering workshop group. GnRH agonist for triggering of final oocyte maturation: time for a change of practice? Hum Reprod Update. 2011;17(4):510–24.

    Google Scholar 

  99. Kessler MJ, Reddy MS, Shah RH, Bahl OP. Structures of N-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979;254(16):7901–8.

    Google Scholar 

  100. Yen SS, Llerena O, Little B, Pearson OH. Disappearance rates of endogenous luteinizing hormone and chorionic gonadotropin in man. J Clin Endocrinol Metab. 1968;28(12):1763–7.

    Google Scholar 

  101. Steptoe P, Edwards RG. Laparoscopic recovery of preovulatory human oocytes after priming of ovaries with gonadotrophins. Lancet. 1970;1(7649):683–9.

    Google Scholar 

  102. Driscoll GL, Tyler JP, Hangan JT, Fisher PR, Birdsall MA, Knight DC. A prospective, randomized, controlled, double-blind, double-dummy comparison of recombinant and urinary HCG for inducing oocyte maturation and follicular luteinization in ovarian stimulation. Hum Reprod. 2000;15(6):1305–10.

    Google Scholar 

  103. Youssef MA, Al-Inany HG, Aboulghar M, Mansour R, Abou-Setta AM. Recombinant versus urinary human chorionic gonadotrophin for final oocyte maturation triggering in IVF and ICSI cycles. Cochrane Database Syst Rev. 2011;13(4):CD003719.

    Google Scholar 

  104. van de Weijer BH, Mulders JW, Bos ES, Verhaert PD, van den Hooven HW. Compositional analyses of a human menopausal gonadotrophin preparation extracted from urine (menotropin). Identification of some of its major impurities. Reprod Biomed Online. 2003;7(5):547–57.

    Google Scholar 

  105. Kuwabara Y, Mine K, Katayama A, Inagawa T, Akira S, Takeshita T. Proteomic analyses of recombinant human follicle-stimulating hormone and urinary-derived gonadotropin preparations. J Reprod Med. 2009;54(8):459–66.

    Google Scholar 

  106. Bassett R, Lispi M, Ceccarelli D, et al. Analytical identification of additional impurities in urinary-derived gonadotrophins. Reprod Biomed Online. 2009;19(3):300–13.

    Google Scholar 

  107. Johnson RT, Gibbs CJ Jr. Creutzfeldt-Jakob disease and related transmissible spongiform encephalopathies. N Engl J Med. 1998;339(27):1994–2004.

    Google Scholar 

  108. Bassett R, Lispi M, Ceccarelli D, et al. Analytical identification of additional impurities in urinary-derived gonadotrophins. Reprod Biomed Online. 2009;19(3):300–13.

    Google Scholar 

  109. Gervais A, Hammel YA, Pelloux S, et al. Glycosylation of human recombinant gonadotrophins: characterization and batch-to-batch consistency. Glycobiology. 2003;13(3):179–89.

    Google Scholar 

  110. Hugues JN, Barlow DH, Rosenwaks Z, et al. Improvement in consistency of response to ovarian stimulation with recombinant human follicle stimulating hormone resulting from a new method for calibrating the therapeutic preparation. Reprod Biomed Online. 2003;6(2):185–90.

    Google Scholar 

  111. Steelman SL, Pohley FM. Assay of follicle stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology. 1953;53(6):604–16.

    Google Scholar 

  112. Bohannon NJ. Insulin delivery using pen devices. Simple-to-use tools may help young and old alike. Postgrad Med. 1999;106(5):57–8, 61–4, 68.

    Google Scholar 

  113. Kadiri A, Chraibi A, Marouan F et al. Comparison of NovoPen 3 and syringes/vials in the acceptance of insulin therapy in NIDDM patients with secondary failure to oral hypoglycaemic agents. Diabetes Res Clin Pract. 1998;41(1):15–23.

    Google Scholar 

  114. Craenmehr E, Bontje PM, Hoomans E, Voortman G, Mannaerts BM. Follitropin-beta administered by pen device has superior local tolerance compared with follitropin-alpha administered by conventional syringe. Reprod Biomed Online. 2001;3(3):185–9.

    Google Scholar 

  115. Aghssa MM, Azargoon A, Ramezanzadeh F, Bagheri M. A comparison of the efficacy, tolerability, and convenience of two formulations of follitropin-alpha in Iranian woman undergoing intracytoplasmic sperm injection cycles. Fertil Steril. 2008;90(4):1043–8.

    Google Scholar 

  116. Weiss N. Gonadotrophin products: empowering patients to choose the product that meets their needs. Reprod Biomed Online. 2007;15(1):31–7.

    Google Scholar 

  117. Coomarasamy A, Afnan M, Cheema D, van der Veen F, Bossuyt PM, van Wely M. Urinary hMG versus recombinant FSH for controlled ovarian hyperstimulation following an agonist long down-regulation protocol in IVF or ICSI treatment: a systematic review and meta-analysis. Hum Reprod. 2008;23(2):310–5.

    Google Scholar 

  118. Al-Inany HG, Abou-Setta AM, Aboulghar MA, Mansour RT, Serour GI. Highly purified hMG achieves better pregnancy rates in IVF cycles but not ICSI cycles compared with recombinant FSH: a meta-analysis. Gynecol Endocrinol. 2009;25(6):372–8.

    Google Scholar 

  119. van Wely M, Kwan I, Burt AL, et al. Recombinant versus urinary gonadotrophin for ovarian stimulation in assisted reproductive technology cycles. Cochrane Database Syst Rev. 2011;16(2): CD005354.

    Google Scholar 

  120. Jee BC, Suh CS, Kim YB, Kim SH, Moon SY. Clinical efficacy of highly purified hMG versus recombinant FSH in IVF/ICSI cycles: a meta-analysis. Gynecol Obstet Invest. 2010;70(2):132–7.

    Google Scholar 

  121. Gerli S, Bini V, Favilli A, Di Renzo GC. Clinical efficacy and cost-effectiveness of HP-human FSH (Fostimon®) versus rFSH (Gonal-F®) in IVF-ICSI cycles: a meta-analysis. Gynecol Endocrinol. 2013;29(6):520–9.

    Google Scholar 

  122. van Wely M, Kwan I, Burt AL, et al. Recombinant versus urinary gonadotrophin for ovarian stimulation in assisted reproductive technology cycles. A Cochrane review. Hum Reprod Update. 2012;18(2):111.

    Google Scholar 

  123. Hompes PG, Broekmans FJ, Hoozemans DA, Schats R, FIRM group. Effectiveness of highly purified human menopausal gonadotropin vs. recombinant follicle-stimulating hormone in first-cycle in vitro fertilization-intracytoplasmic sperm injection patients. Fertil Steril. 2008;89(6):1685–93.

    Google Scholar 

  124. Devroey P, Pellicer A, Nyboe Andersen A, Arce JC, Menopur in GnRH antagonist cycles with single embryo transfer trial group. A randomized assessor-blind trial comparing highly purified hMG and recombinant FSH in a GnRH antagonist cycle with compulsory single-blastocyst transfer. Fertil Steril. 2012;97(3):561–71.

    Google Scholar 

  125. Tulppala M, Aho M, Tuuri T, et al. Comparison of two recombinant follicle-stimulating hormone preparations in in-vitro fertilization: a randomized clinical study. Hum Reprod. 1999;14(11):2709–15.

    Google Scholar 

  126. Brinsden P, Akagbosu F, Gibbons LM, et al. A comparison of the efficacy and tolerability of two recombinant human follicle-stimulating hormone preparations in patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2000;73(1):114–6.

    Google Scholar 

  127. Harlin J, Csemiczky G, Wramsby H, Fried G. Recombinant follicle stimulating hormone in in-vitro fertilization treatment-clinical experience with follitropin alpha and follitropin beta. Hum Reprod. 2000;15(2):239–44.

    Google Scholar 

  128. Harlin J, Aanesen G, Csemiczky G, Wramsby H, Fried G. Delivery rates following IVF treatment, using two recombinant FSH preparations for ovarian stimulation. Hum Reprod. 2002;17(2):304–9.

    Google Scholar 

  129. Saz-Parkinson Z, López-Cuadrado T, Bouza C, Amate JM. Outcomes of new quality standards of follitropin alfa on ovarian stimulation: meta-analysis of previous studies. BioDrugs. 2009;23(1):37–42.

    Google Scholar 

  130. Mahmoud Youssef MA, van Wely M, Aboulfoutouh I, El-Khyat W, van der Veen F, Al-Inany H. Is there a place for corifollitropin alfa in IVF/ICSI cycles? A systematic review and meta-analysis. Fertil Steril. 2012;97(4):876-85. (Erratum in: Fertil Steril 2012;97(6):1479).

    Google Scholar 

  131. Pouwer AW, Farquhar C, Kremer JA. Long-acting FSH versus daily FSH for women undergoing assisted reproduction. Cochrane Database Syst Rev. 2012;6:CD009577.

    Google Scholar 

  132. Shoham Z, Smith H, Yeko T, O’Brien F, Hemsey G, O’Dea L. Recombinant LH (lutropin alfa) for the treatment of hypogonadotrophic women with profound LH deficiency: a randomized, double-blind, placebo-controlled, proof-of-efficacy study. Clin Endocrinol (Oxf). 2008;69(3):471–8.

    Google Scholar 

  133. European Recombinant Human LH Study Group. Recombinant human luteinizing hormone (LH) to support recombinant human follicle-stimulating hormone (FSH)-induced follicular development in LH-and FSH-deficient anovulatory women: a dose-finding study. J Clin Endocrinol Metab. 1998;83(5):1507–14.

    Google Scholar 

  134. Loumaye E, Engrand P, Howles CM, O’Dea L. Assessment of the role of serum luteinizing hormone and estradiol response to follicle-stimulating hormone on in vitro fertilization treatment outcome. Fertil Steril. 1997;67(5):889–99.

    Google Scholar 

  135. Sills ES, Levy DP, Moomjy M, et al. A prospective, randomized comparison of ovulation induction using highly purified follicle- stimulating hormone alone and with recombinant human luteinizing hormone in in-vitro fertilization. Hum Reprod. 1999;14:2230–5.

    Google Scholar 

  136. Baruffi RL, Mauri AL, Petersen CG, et al. Recombinant LH supplementation to recombinant FSH during induced ovarian stimulation in the GnRH-antagonist protocol: a meta-analysis. Reprod Biomed Online. 2007;14(1):14–25.

    Google Scholar 

  137. Kolibianakis EM, Kalogeropoulou L, Griesinger G, et al. Among patients treated with FSH and GnRH analogues for in vitro fertilization, is the addition of recombinant LH associated with the probability of live birth? A systematic review and meta-analysis. Hum Reprod Update. 2007;13(5):445–52.

    Google Scholar 

  138. Mochtar MH, Van der V, Ziech M, van Wely M. Recombinant Luteinizing Hormone (rLH) for controlled ovarian hyperstimulation in assisted reproductive cycles. Cochrane Database Syst Rev. 2007;18(2): CD005070.

    Google Scholar 

  139. Oliveira JB, Mauri AL, Petersen CG, et al. Recombinant luteinizing hormone supplementation to recombinant follicle-stimulation hormone during induced ovarian stimulation in the GnRH-agonist protocol: a meta-analysis. J Assist Reprod Genet. 2007;24(2–3):67–75.

    Google Scholar 

  140. Marrs R, Meldrum D, Muasher S, Schoolcraft W, Werlin L, Kelly E. Randomized trial to compare the effect of recombinant human FSH (follitropin alfa) with or without recombinant human LH in women undergoing assisted reproduction treatment. Reprod Biomed Online. 2004;8(2):175–82.

    Google Scholar 

  141. Esposito MA, Barnhart KT, Coutifaris C, Patrizio P. Role of periovulatory luteinizing hormone concentrations during assisted reproductive technology cycles stimulated exclusively with recombinant follicle-stimulating hormone. Fertil Steril. 2001;75(3):519–24.

    Google Scholar 

  142. Westergaard LG, Laursen SB, Andersen CY. Increased risk of early pregnancy loss by profound suppression of luteinizing hormone during ovarian stimulation in normogonadotrophic women undergoing assisted reproduction. Hum Reprod. 2000;15(5):1003–8.

    Google Scholar 

  143. Humaidan P, Bungum L, Bungum M, Andersen CY. Ovarian response and pregnancy outcome related to mid-follicular LH levels in women undergoing assisted reproduction with GnRH agonist down-regulation and recombinant FSH stimulation. Hum Reprod. 2002;17(8):2016–21.

    Google Scholar 

  144. Laml T, Obruca A, Fischl F, Huber JC. Recombinant luteinizing hormone in ovarian hyperstimulation after stimulation failure in normogonadotrophic women. Gynecol Endocrinol. 1999;13(2):98–103.

    Google Scholar 

  145. Nakagawa K, Ohgi S, Nakashima A, Horikawa T, Sugiyama R, Saito H. The ratio of late-follicular to mid-follicular phase LH concentrations efficiently predicts ART outcomes in women undergoing ART treatment with GnRH-agonist long protocol and stimulation with recombinant FSH. J Assist Reprod Genet. 2008;25(8):359–64.

    Google Scholar 

  146. De Placido G, Mollo A, Alviggi C, et al. Rescue of IVF cycles by HMG in pituitary down-regulated normogonadotrophic young women characterized by a poor initial response to recombinant FSH. Hum Reprod. 2001;16(9):1875–79.

    Google Scholar 

  147. De Placido G, Alviggi C, Mollo A et al. Effects of recombinant LH (rLH) supplementation during controlled ovarian hyperstimulation (COH) in normogonadotrophic women with an initial inadequate response to recombinant FSH (rFSH) after pituitary downregulation. Clin Endocrinol (Oxf). 2004;60(5):637–43.

    Google Scholar 

  148. De Placido G, Alviggi C, Perino A, et al. Recombinant human LH supplementation versus recombinant human FSH (rFSH) step-up protocol during controlled ovarian stimulation in normogonadotrophic women with initial inadequate ovarian response to rFSH. A multicentre, prospective, randomized controlled trial. Hum Reprod. 2005;20(2):390–6.

    Google Scholar 

  149. Ferraretti AP, Gianaroli L, Magli MC, D’angelo A, Farfalli V, Montanaro N. Exogenous luteinizing hormone in controlled ovarian hyperstimulation for assisted reproduction techniques. Fertil Steril. 2004;82(6):1521–6.

    Google Scholar 

  150. Alviggi C, Clarizia R, Pettersson K, et al. Suboptimal response to GnRHa long protocol is associated with a common LH polymorphism. Reprod Biomed Online. 2009;18(1):9–14.

    Google Scholar 

  151. Hurwitz JM, Santoro N. Inhibins, activins, and follistatin in the aging female and male. Semin Reprod Med. 2004;22(3):209–17.

    Google Scholar 

  152. Piltonen T, Koivunen R, Ruokonen A, Tapanainen JS. Ovarian age-related responsiveness to human chorionic gonadotropin. J Clin Endocrinol Metab. 2003;88(7):3327–32.

    Google Scholar 

  153. Vihko KK, Kujansuu E, Mörsky P, Huhtaniemi I, Punnonen R. Gonadotropins and gonadotropin receptors during the perimenopause. Eur J Endocrinol. 1996;134(3):357–61.

    Google Scholar 

  154. Marrama P, Montanini V, Celani MF, et al. Decrease in luteinizing hormone biological activity/immunoreactivity ratio in elderly men. Maturitas. 1984;5(4):223–31.

    Google Scholar 

  155. Mitchell R, Hollis S, Rothwell C, Robertson WR. Age related changes in the pituitary-testicular axis in normal men; lower serum testo- sterone results from decreased bioactive LH drive. Clin Endocrinol. 1995;42(5):501–7.

    Google Scholar 

  156. Fleming R, Rehka P, Deshpande N, Jamieson ME, Yates RW, Lyall H. Suppression of LH during ovarian stimulation: effects differ in cycles stimulated with purified urinary FSH and recombinant FSH. Hum Reprod. 2000;15(7):1440–5.

    Google Scholar 

  157. Lévy DP, Navarro JM, Schattman GL, Davis OK, Rosenwaks Z. The role of LH in ovarian stimulation: exogenous LH: let’s design the future. Hum Reprod. 2000;15(11):2258-65. (Review. Erratum in: Hum Reprod 2001;16(3) 598).

    Google Scholar 

  158. Fan W, Li S, Chen Q, Huang Z, Ma Q, Wang Y. Recombinant luteinizing hormone supplementation in poor responders undergoing IVF: a systematic review and meta-analysis. Gynecol Endocrinol. 2013;29(4):278–84.

    Google Scholar 

  159. Carone D, Caropreso C, Vitti A, Chiappetta R. Efficacy of different gonadotropin combinations to support ovulation induction in WHO type I anovulation infertility: clinical evidences of human recombinant FSH/human recombinant LH in a 2:1 ratio and highly purified human menopausal gonadotropin stimulation protocols. J Endocrinol Invest. 2012;35(11):996–1002.

    Google Scholar 

  160. Pacchiarotti A, Sbracia M, Frega A, Selman H, Rinaldi L, Pacchiarotti A. Urinary hMG (Meropur) versus recombinant FSH plus recombinant LH (Pergoveris) in IVF: a multicenter, prospective, randomized controlled trial. Fertil Steril. 2010;94(6):2467–9.

    Google Scholar 

  161. Bühler KF, Fischer R. Recombinant human LH supplementation versus supplementation with urinary hCG-based LH activity during controlled ovarian stimulation in the long GnRH-agonist protocol: a matched case-control study. Gynecol Endocrinol. 2012;28(5):345–50.

    Google Scholar 

  162. Fábregues F, Creus M, Casals G, Carmona F, Balasch J. Outcome from consecutive ICSI cycles in patients treated with recombinant human LH and those supplemented with urinary hCG-based LH activity during controlled ovarian stimulation in the long GnRH-agonist protocol. Gynecol Endocrinol. 2013;29(5):430–5.

    Google Scholar 

  163. Fanchin R, Righini C, Olivennes F, de Ziegler D, Selva J, Frydman R. Premature progesterone elevation does not alter oocyte quality in in vitro fertilization. Fertil Steril. 1996;65(6):1178–83.

    Google Scholar 

  164. Ziebe S, Lundin K, Janssens R, Helmgaard L, Arce JC; MERIT (Menotrophin vs Recombinant FSH in vitro Fertilisation Trial) Group. Influence of ovarian stimulation with HP-hMG or recombinant FSH on embryo quality parameters in patients undergoing IVF. Hum Reprod. 2007;22(9):2404–13.

    Google Scholar 

  165. Petanovski Z, Dimitrov G, Aydin B, et al. Recombinant FSH versus HP-HMG for controled ovarian stimulation in intracytoplasmic sperm injection cycles. Med Arh. 2011;65(3):153–6.

    Google Scholar 

  166. Ye H, Huang G, Pei L, Zeng P, Luo X. Outcome of in vitro fertilization following stimulation with highly purified hMG or recombinant FSH in downregulated women of advanced reproductive age: a prospective, randomized and controlled trial. Gynecol Endocrinol. 2012;28(7):540–4.

    Google Scholar 

  167. Hugues JN, Massé-Laroche E, Reboul-Marty J, Boîko O, Meynant C, Cédrin-Durnerin I. Impact of endogenous luteinizing hormone serum levels on progesterone elevation on the day of human chorionic gonadotropin administration. Fertil Steril. 2011;96(3):600–4.

    Google Scholar 

  168. Kolibianakis EM, Venetis CA, Bontis J, Tarlatzis BC. Significantly lower pregnancy rates in the presence of progesterone elevation in patients treated with GnRH antagonists and gonadotrophins: a systematic review and meta-analysis. Curr Pharm Biotechnol. 2012;13(3):464–70.

    Google Scholar 

  169. Bosch E, Labarta E, Crespo J, et al. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: analysis of over 4000 cycles. Hum Reprod. 2010;25(8):2092–100.

    Google Scholar 

  170. Xu B, Li Z. Zhang H, et al. Serum progesterone level effects on the outcome of in vitro fertilization in patients with different ovarian response: an analysis of more than 10,000 cycles. Fertil Steril. 2012;97(6):1321–7.

    Google Scholar 

  171. Hofmann GE, Bentzien F, Bergh PA, et al. Premature luteinization in controlled ovarian hyperstimulation has no adverse effect on oocyte and embryo quality. Fertil Steril. 1993;60(4):675–9.

    Google Scholar 

  172. Melo MA, Meseguer M, Garrido N, Bosch E, Pellicer A, Remohí J. The significance of premature luteinization in an oocyte-donation programme. Hum Reprod. 2006;21(6):1503–7.

    Google Scholar 

  173. van Koppen CJ, Verbost PM van de Lagemaat R, et al. Signaling of an allosteric, nanomolar potent, low molecular weight agonist for the follicle-stimulating hormone receptor. Biochem Pharmacol. 2013;85(8):1162–70.

    Google Scholar 

  174. van de Lagemaat R, Timmers CM, Kelder J, van Koppen C, Mosselman S, Hanssen RG. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod. 2009;24(3):640–8.

    Google Scholar 

  175. Yanofsky SD, Shen ES, Holden F, et al. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists. J Biol Chem. 2006;281(19):13226–33.

    Google Scholar 

  176. Costagliola S, Urizar E, Mendive F, Vassart G. Specificity and promiscuity of gonadotropin receptors. Reproduction. 2005;130(3):275–81.

    Google Scholar 

  177. Jiang X, Liu H, Chen X, et al. Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor. Proc Natl Acad Sci U S A. 2012;109(31):12491–6.

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to Mrs. Fabiola C. Bento for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro C. Esteves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ferreira Leão, R., Esteves, S. (2015). Gonadotropin in Assisted Reproduction: An Evolution Perspective. In: Schattman, G., Esteves, S., Agarwal, A. (eds) Unexplained Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2140-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2140-9_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2139-3

  • Online ISBN: 978-1-4939-2140-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics