Skip to main content

Optimization and Scaling of Micro-relays for Ultralow-Power Digital Logic

  • Chapter
  • First Online:
Micro-Relay Technology for Energy-Efficient Integrated Circuits

Part of the book series: Microsystems and Nanosystems ((MICRONANO,volume 1))

  • 782 Accesses

Abstract

This chapter begins with general overview of the relay energy-delay optimization, followed by a sensitivity-based energy-delay optimization methodology. We establish simple relay design guidelines and examine the implications of scaling relay devices using the proposed design methodology. We also show that in a manner highly analogous to MOSFET scaling, dimensional scaling can be applied to relays to improve device density, switching delay, and power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To establish the criteria to which the switching delay of a relay is dominated by mechanical delay, we first note that for the relay circuit as shown in Fig. 5.1, the electrical delay of the chain RC network can be estimated by the Elmore delay [2]:

    $$ {t}_{RC}={\displaystyle \sum_{i=1}^N}\left({C}_i\times i\times {R}_{ON}\right) $$

    where R ON is the ON-state resistance of the relay. For the worst-case C i and R ON of 1fF and 10 kΩ, respectively, the Elmore delay is bounded by

    $$ {t}_{RC}={\displaystyle {\sum}_{i=1}^N\left({C}_i\times i\times {R}_{ON}\right)}\le 10k\Omega \times 1fF\times \frac{N\left(N+1\right)}{2}\approx 5 ps\times {N}^2 $$

    As will be shown later in this chapter, the pull-in delay of a relay is in the nanosecond range; therefore, t RC is negligible so long as 5 ps × N 2 < < 1 ns or N < < 14.

  2. 2.

    In a complex gate, not all the nodes (i.e., capacitances) switch with equal probability; therefore we can generalize the circuit to have an average activity.

  3. 3.

    Since the optimal V dd is less than 2 × V pi, switching from high-to-low and low-to-high is asymmetric about V dd/2. Similarly as for CMOSFETs, the energy-delay optimal design for a relay is therefore not the same as a design optimized for static noise margin [14].

  4. 4.

    Note that for a CMOS transistor driving a fixed capacitive load, one would also obtain similar optimal fixed-to-area-dependent capacitance ratio.

  5. 5.

    Variations in C norm are much larger than those in V norm since V norm is close to 1 and therefore C norm—which is proportional to 1/(1 − V norm)—is a large number.

References

  1. F. Chen, H. Kam, D. Markovic, T.-J. King Liu, V. Stojanovic, and E. Alon, “Integrated circuit design with NEM relays,” in Proc. IEEE/ACM Int. Conf. Computer Aided Design, 2008, pp. 750–757.

    Google Scholar 

  2. E. Elmore, The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19, 55–63 (1948)

    Article  Google Scholar 

  3. D. Markovic, V. Stojanovic, B. Nikolic, M.A. Horowitz, R.W. Brodersen, Methods for true energy-performance optimization. IEEE J. Solid State Circuits 39(8), 1282–1293 (2004)

    Article  Google Scholar 

  4. B. Nikolic, Design in the power-limited scaling regime. IEEE Trans. Elect. Dev. 55(1), 71–83 (2008)

    Article  Google Scholar 

  5. D. Marković. A power/area optimal approach to VLSI signal processing. Ph.D. Thesis, UC Berkeley, May 2006.

    Google Scholar 

  6. V. Stojanovic, D. Markovic, B. Nikolic, M.A. Horowitz, R.W. Brodersen. Energy-delay tradeoffs in combinational logic using gate sizing and supply voltage optimization, in Proceedings of the 28th European Solid-State Circuits Conference, ESSCIRC’2002, Sep 2002. pp. 211–214.

    Google Scholar 

  7. V. Zyuban, D. Brrok, V. Srinivasan, M. Gschwind, P. Bose, P.N. Strenski, P.G. Emma, Integrated analysis of power and performance for pipelined microprocessor. IEEE Trans. Comput. 53(8), 1004–1016 (2004)

    Article  Google Scholar 

  8. R. Broderson, M. Horowitz, D. Markovic, B. Nikolic, V. Stojanovic. Methods for true power minimization, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2002, pp. 35–42.

    Google Scholar 

  9. K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, Quality factors in micro- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000)

    Article  Google Scholar 

  10. D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia, Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999)

    Article  Google Scholar 

  11. R. Nathanael, V. Pott, H. Kam, J. Jeon, T.-J. King Liu. 4-terminal relay technology for complementary logic, in IEDM Tech. Dig., Dec. 2009, pp. 223–226.

    Google Scholar 

  12. H. Kam, V. Pott, R. Nathanael, J. Jeon, E. Alon, T.-J. King Liu. Design and reliability of a MEM relay technology for zero-standby-power digital logic applications, in IEDM Tech. Dig., Dec. 2009, pp. 809–812.

    Google Scholar 

  13. V. Zyuban, P. Strenski. Unified methodology for resolving power-performance tradeoffs at the microarchitectural and circuit levels, in Proc. ISLPED, Aug 2002, pp. 166–171.

    Google Scholar 

  14. R. Nathanael, V. Pott, H. Kam, J. Jeon, E. Alon, T.-J.K. Liu, Four-terminal-relay body-biasing schemes for complementary logic circuits. IEEE Elect. Dev. Lett. 31(8), 890–892 (2010)

    Article  Google Scholar 

  15. S. Boyd, S.J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric programming. Opt. Eng. 8(1), 67–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. B.H. Calhoun, A. Wang, A. Chandrakasan, Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J. Solid State Circuits 50(9), 1778–1786 (2005)

    Article  Google Scholar 

  17. R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circ. SC-9, 256 (1974)

    Article  Google Scholar 

  18. M.L. Roukes. Nanoelectromechanical systems, in Tech. Digest, 2000 Solid-State Sensor and Actuator Workshop, June 2000, pp. 367–376.

    Google Scholar 

  19. B.D. Jensen, K. Huang, L.L.W. Chow, K. Kurabayashi, Adhesion effects on contact opening dynamics in micromachined switches. J. Appl. Phys. 97(10), 103–535 (2005)

    Article  Google Scholar 

  20. R. Holm, E. Holm, Electric contacts; theory and application, 4th edn. (Springer, Berlin, 1967)

    Book  Google Scholar 

  21. G. Rubio-Bollinger, S.R. Bahn, N. Agraït, K.W. Jacobsen, S. Vieira, Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001)

    Article  Google Scholar 

  22. T.J. Cheng, S.A. Bhave. High-Q, low impedance polysilicon resonators with 10 nm air gaps, in Proc. Int. Conf. Micro Electro Mech. Syst., MEMS, 2010, pp. 695–698.

    Google Scholar 

  23. H. Kam, T.-J. King Liu, E. Alon, M. Horowitz. Circuit level requirements for MOSFET replacement devices, in IEDM Tech. Dig., Dec. 2008, pp. 427.

    Google Scholar 

  24. S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K.K. Das, W. Haensch, E.J. Nowak, D.M. Sylvester, Ultralow-voltage, minimum-energy CMOS. IBM J. Res. Dev. 50(4/5), 469–490 (2006)

    Article  Google Scholar 

  25. A.P. Chandrakasan, D.C. Daly, D.F. Finchelstein, J. Kwong, Y.K. Ramadass, M.E. Sinangil, V. Sze, N. Verma, Technologies for ultradynamic voltage scaling. Proc. IEEE 98(2), 191–214 (2010)

    Article  Google Scholar 

  26. International Technology Roadmap for Semiconductors (ITRS). (Online). http://public.itrs.net

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kam, H., Chen, F. (2015). Optimization and Scaling of Micro-relays for Ultralow-Power Digital Logic. In: Micro-Relay Technology for Energy-Efficient Integrated Circuits. Microsystems and Nanosystems, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2128-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2128-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2127-0

  • Online ISBN: 978-1-4939-2128-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics