Design and Modeling of Micro-relay

  • Hei Kam
  • Fred Chen
Part of the Microsystems and Nanosystems book series (MICRONANO, volume 1)


This chapter begins with a detailed analysis on the design and modeling varies micro-relays. Analytical formulations for the switching voltages, spring design and modeling, and the dynamic behavior of micro-relays are established. These delay and energy models are then used for relay energy-delay optimization and scaling in Chap.  5.


Residual Stress Cantilever Beam Beam Deflection Torsional Beam Movable Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.P. Timoshenko, J.M. Gere, Mechanics of Materials (Brooks/Cole, Pacific Grove, 2001)Google Scholar
  2. 2.
    W.N. Sharpe Jr., K.M. Jackson, K.J. Hemker, Z. Xie, Effect of specimen size on Young’s modulus and fracture strength of polysilicon. J. Microelectromech. Syst. 10(3), 317–326 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Biebl, H. von Philipsborn. Fracture strength of doped and undoped polysilicon, in Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers’ 95. The 8th International Conference on, vol. 2, pp. 72–75. IEEE, 1995.Google Scholar
  4. 4.
    H. Kam, V. Pott, R. Nathanael, J. Jeon, E. Alon, T.-J. King Liu. Design and reliability of a micro-relay technology for zero-standby-power digital logic applications, in Electron Devices Meeting (IEDM), 2009 I.E. International, pp. 1–4. IEEE, 2009.Google Scholar
  5. 5.
    R. Sattler, F. Plötz, G. Fattinger, G. Wachutka, Modeling of an electrostatic torsional actuator: demonstrated with an RF MEMS switch. Sens. Actuators A. Phys. 97–98, 337–346 (2002)CrossRefGoogle Scholar
  6. 6.
    W.C. Young, R.G. Budynas, Roark’s Formulas for Stress and Strain, vol. 6 (McGraw-Hill, New York, NY, 2002)Google Scholar
  7. 7.
    J. Jeon, V. Pott, H. Kam, R. Nathanael, E. Alon, T.J. King Liu, Perfectly complementary relay design for digital logic applications. IEEE Elect. Dev. Lett. 31, 371–373 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Holm, E. Holm, Electric Contacts; Theory and Application, 4th edn. (Springer, Berlin, 1967)CrossRefGoogle Scholar
  9. 9.
    Y.V. Sharvin, Sharvin Resistance Formula. Sov. Phys. JETP. 21, pp. 655 (1965)Google Scholar
  10. 10.
    B. Nikolic, P.B. Allen, Electron transport through a circular constriction. Phys. Rev. B 60(6), 3963–3969 (1999)CrossRefGoogle Scholar
  11. 11.
    G.M. Rebeiz, RF MEMS Theory, Design and Technology (Wiley, Hoboken NJ, 2003)Google Scholar
  12. 12.
    R.A. Johnson, Mechanical Filters in Electronics (Wiley, New York, NY, 1983)Google Scholar
  13. 13.
    K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, Quality factors in micro- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000)CrossRefGoogle Scholar
  14. 14.
    D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia, Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hei Kam
    • 1
  • Fred Chen
    • 2
  1. 1.Intel CorporationHillsboroUSA
  2. 2.Lion Semiconductor, Inc.BerkeleyUSA

Personalised recommendations