Skip to main content

Systems Biology of Platelet–Vessel Wall Interactions

  • Chapter
  • First Online:
A Systems Biology Approach to Blood

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 844))

Abstract

Platelets are small, anucleated cells that participate in primary hemostasis by forming a hemostatic plug at the site of a blood vessel’s breach, preventing blood loss. However, hemostatic events can lead to excessive thrombosis, resulting in life-threatening strokes, emboli, or infarction. Development of multi-scale models coupling processes at several scales and running predictive model simulations on powerful computer clusters can help interdisciplinary groups of researchers to suggest and test new patient-specific treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111(11):5271–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Jackson SP. Arterial thrombosis-insidious, unpredictable and deadly. Nat Med. 2011;17(11):1423–36.

    Article  CAS  PubMed  Google Scholar 

  3. Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov. 2010;9(2):154–69.

    Article  CAS  PubMed  Google Scholar 

  4. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res. 2013;112(11):1506–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Boilard E, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327(5965):580–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kauskot A, Hoylaerts MF. Platelet receptors. Handb Exp Pharmacol. 2012;210:23–57.

    Article  CAS  PubMed  Google Scholar 

  8. Falet H, et al. A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. J Exp Med. 2010;207(9):1967–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Feng S, et al. Filamin A binding to the cytoplasmic tail of glycoprotein Ibalpha regulates von Willebrand factor-induced platelet activation. Blood. 2003;102(6):2122–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nurden P, et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood. 2011;118(22):5928–37.

    Article  CAS  PubMed  Google Scholar 

  11. Berrou E, et al. Heterogeneity of platelet functional alterations in patients with filamin A mutations. Arterioscler Thromb Vasc Biol. 2013;33(1):e11–8.

    Article  CAS  PubMed  Google Scholar 

  12. Versteeg HH, et al. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58.

    Article  CAS  PubMed  Google Scholar 

  13. Gachet C P2Y(12) receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signal. 2012;8(3):609–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schaff M, et al. Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation. 2013;128(5):541–52.

    Article  CAS  PubMed  Google Scholar 

  15. Borst O, et al. The inflammatory chemokine CXC motif ligand 16 triggers platelet activation and adhesion via CXC motif receptor 6-dependent phosphatidylinositide 3-kinase/Akt signaling. Circ Res. 2012;111(10):1297–307.

    Article  CAS  PubMed  Google Scholar 

  16. Prevost N, et al. Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1. Blood. 2004;103(4):1348–55.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu L, et al. Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci U S A. 2007;104(5):1621–6.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Angelillo-Scherrer A, et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J Clin Invest. 2005;115(2):237–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Vaiyapuri S, et al. Gap junctions and connexin hemichannels underpin hemostasis and thrombosis. Circulation. 2012;125(20):2479–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost. 2013;11(10):1800–13.

    CAS  PubMed  Google Scholar 

  21. Stalker TJ, et al. Platelet signaling. Handb Exp Pharmacol. 2012;210:59–85.

    Article  CAS  PubMed  Google Scholar 

  22. Italiano JE Jr, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Italiano JE Jr, Battinelli EM. Selective sorting of alpha-granule proteins. J Thromb Haemost. 2009;7(Suppl 1):173–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Battinelli EM, Markens BA, Italiano JE Jr. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood. 2011;118(5):1359–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Battinelli EM, et al. Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response. Blood. 2014, 123(1):101–12.

    Google Scholar 

  26. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.

    Article  CAS  PubMed  Google Scholar 

  27. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mause SF. Platelet microparticles: reinforcing the hegemony of platelets in atherothrombosis. Thromb Haemost. 2013;109(1):5–6.

    Article  CAS  PubMed  Google Scholar 

  29. Heijnen HF, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.

    CAS  PubMed  Google Scholar 

  30. von Bruhl ML, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.

    Article  Google Scholar 

  31. Darbousset R, et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133–43.

    Article  CAS  PubMed  Google Scholar 

  32. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs TA, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Demers M, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chen K, et al. Endocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivo. Blood. 2012;120(22):4421–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Duerschmied D, et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121(6):1008–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Martinod K, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110(21):8674–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Torisu T, et al. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med. 2013;19(10):1281–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Li Z, et al. A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell. 2003;112(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang G, et al. Biphasic roles for soluble guanylyl cyclase (sGC) in platelet activation. Blood. 2011;118(13):3670–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gambaryan S, Friebe A, Walter U Does the NO/sGC/cGMP/PKG pathway play a stimulatory role in platelets? Blood. 2012;119(22):5335–6; author reply 5336–7.

    Article  CAS  PubMed  Google Scholar 

  42. Tsikas D, et al. Extra-platelet NO and NO(+)-containing drugs are potent inhibitors of platelet aggregation in humans by cGMP-dependent and cGMP-independent mechanisms. Blood. 2012;119(22):5337–9; author reply 5339.

    Article  CAS  PubMed  Google Scholar 

  43. Sylman JL, et al. Transport limitations of nitric oxide inhibition of platelet aggregation under flow. Ann Biomed Eng. 2013;41(10):2193–205.

    Article  CAS  PubMed  Google Scholar 

  44. Schulz C, Massberg S Platelets in atherosclerosis and thrombosis. Handb Exp Pharmacol. 2012;210:111–33.

    Article  CAS  PubMed  Google Scholar 

  45. Lam WA, et al. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater. 2011;10(1):61–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kita A, et al. Microenvironmental geometry guides platelet adhesion and spreading: a quantitative analysis at the single cell level. PLoS ONE. 2011;6(10):e26437.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Cines DB, et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood. 2014;123(10):1596–603.

    Article  CAS  PubMed  Google Scholar 

  48. Westein E, et al. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci U S A. 2013;110(4):1357–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Schumacher D, et al. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  50. Macaulay IC, et al. Platelet genomics and proteomics in human health and disease. J Clin Invest. 2005;115(12):3370–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Mason KD, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128(6):1173–86.

    Article  CAS  PubMed  Google Scholar 

  52. Gieger C, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480(7376):201–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Jones CI, et al. A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood. 2009;114(7):1405–16.

    Article  CAS  PubMed  Google Scholar 

  54. Rowley JW, et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood. 2011;118(14):e101–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Burkhart JM, et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood. 2012;120(15):e73–e82.

    Article  CAS  PubMed  Google Scholar 

  56. Dittrich M, et al. Platelet protein interactions: map, signaling components, and phosphorylation groundstate. Arterioscler Thromb Vasc Biol. 2008;28(7):1326–31.

    Article  CAS  PubMed  Google Scholar 

  57. Coppinger JA, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004;103(6):2096–104.

    Article  CAS  PubMed  Google Scholar 

  58. Pena E, et al. Proteomic signature of thrombin-activated platelets after in vivo nitric oxide-donor treatment: coordinated inhibition of signaling (phosphatidylinositol 3-kinase-gamma, 14-3-3zeta, and growth factor receptor-bound protein 2) and cytoskeleton protein translocation. Arterioscler Thromb Vasc Biol. 2011;31(11):2560–9.

    Article  CAS  PubMed  Google Scholar 

  59. Dittrich M, et al. Understanding platelets. Lessons from proteomics, genomics and promises from network analysis. Thromb Haemost. 2005;94(5):916–25.

    CAS  PubMed  Google Scholar 

  60. Boyanova D, et al. PlateletWeb: a systems biologic analysis of signaling networks in human platelets. Blood. 2012;119(3):e22–e34.

    Article  CAS  PubMed  Google Scholar 

  61. Dittrich M, et al. Characterization of a novel interaction between vasodilator-stimulated phosphoprotein and Abelson interactor 1 in human platelets: a concerted computational and experimental approach. Arterioscler Thromb Vasc Biol. 2010;30(4):843–50.

    Article  CAS  PubMed  Google Scholar 

  62. Jupe S, et al. Reactome-a curated knowledgebase of biological pathways: megakaryocytes and platelets. J Thromb Haemost. 2012;10(11):2399–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Xu Z, et al. Computational approaches to studying thrombus development. Arterioscler Thromb Vasc Biol. 2011;31(3):500–5.

    Article  PubMed  Google Scholar 

  64. Flamm MH, et al. Multiscale prediction of patient-specific platelet function under flow. Blood. 2012;120(1):190–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Flamm MH, Diamond SL. Multiscale systems biology and physics of thrombosis under flow. Ann Biomed Eng. 2012;40(11):2355–64.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Stalker TJ, et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 2013;121(10):1875–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Skorczewski T, Erickson LC, Fogelson AL. Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations. Biophys J. 2013;104(8):1764–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Voronov RS, et al. Simulation of intrathrombus fluid and solute transport using in vivo clot structures with single platelet resolution. Ann Biomed Eng. 2013;41(6):1297–307.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Kim OV, et al. Fibrin networks regulate protein transport during thrombus development. PLoS Comput Biol. 2013;9(6):e1003095.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Leiderman K, Fogelson A. An overview of mathematical modeling of thrombus formation under flow. Thromb Res. 2014;133(Suppl 1):S12–4.

    Article  PubMed  Google Scholar 

  71. Pivkin IV, Richardson PD, Karniadakis G. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc Natl Acad Sci U S A. 2006;103(46):17164–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Begent N, Born GV. Growth rate in vivo of platelet thrombi, produced by iontophoresis of ADP, as a function of mean blood flow velocity. Nature. 1970;227(5261):926–30.

    Article  CAS  PubMed  Google Scholar 

  73. Fogelson AL, Guy RD. Immersed-boundary-type models of intravascular platelet aggregation Comput Methods. Appl Mech Eng. 2008;197:2087–104.

    Article  Google Scholar 

  74. Mody NA, King MR. Platelet adhesive dynamics. Part I: characterization of platelet hydrodynamic collisions and wall effects. Biophys J. 2008;95(5):2539–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Huang PY, Hellums JD. Aggregation and disaggregation kinetics of human blood platelets: part III. The disaggregation under shear stress of platelet aggregates. Biophys J. 1993;65(1):354–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Huang PY, Hellums JD. Aggregation and disaggregation kinetics of human blood platelets: part II. Shear-induced platelet aggregation. Biophys J. 1993;65(1):344–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Huang PY, Hellums JD. Aggregation and disaggregation kinetics of human blood platelets: part I. Development and validation of a population balance method. Biophys J. 1993;65(1):334–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Leiderman K, Fogelson AL. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math Med Biol. 2011;28(1):47–84.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kuharsky AL, Fogelson AL. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys J. 2001;80(3):1050–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Xu Z, et al. A multiscale model of thrombus development. J R Soc Interface. 2008;5(24):705–22.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Xu Z, et al. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys J. 2010;98(9):1723–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Xu Z, et al. Multiscale model of fibrin accumulation on the blood clot surface and platelet dynamics. Methods Cell Biol. 2012;110:367–88.

    Article  PubMed  Google Scholar 

  83. Xu Z, et al. Multiscale models of thrombogenesis. Wiley Interdiscip Rev Syst Biol Med. 2012;4(3):237–46.

    Article  CAS  PubMed  Google Scholar 

  84. Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett. 1992;69(13):2013–6.

    Article  CAS  PubMed  Google Scholar 

  85. Stalker TJ, et al. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood. 2014;124(11):1824–31.

    Article  CAS  PubMed  Google Scholar 

  86. Wu Z, et al. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow. Phil Trans R Soc A. 2014;372(2021):1–23.

    Google Scholar 

  87. Diamond SL, et al. Systems biology of platelet-vessel wall interactions. Front Physiol. 2013;4:229.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Research of Mark Alber and Oleg Kim reported in this publication was supported by NIH U01HL116330, Yolande Chen by an American Heart Association Post-Doctoral Fellowship, and Seth Corey by NIH R21HL106462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolande Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, Y., Corey, S., Kim, O., Alber, M. (2014). Systems Biology of Platelet–Vessel Wall Interactions. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_5

Download citation

Publish with us

Policies and ethics