Skip to main content

A Systems Approach to Blood Disorders

  • Chapter
  • First Online:
Book cover A Systems Biology Approach to Blood

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 844))

Abstract

A systems approach to blood diseases can help make essential contributions to our ability to diagnose, treat, and perhaps even prevent common diseases in humans. Using blood as a window, one can study health and disease through this unique tool box with reactive biological fluids that mirrors the prevailing hemodynamics of the vessel walls and the various blood cell types. Many blood diseases, rare and common, can and have been exploited using systems biology approaches with successful results and therefore ideal models for systems medicine. More importantly, hematopoiesis offers one of the best studied systems with insight into stem cell biology, cellular interaction, development; linage programming and reprogramming that are influenced every day by the most mature and understood regulatory networks.

The views expressed by PQ in this chapter are personal and do not necessarily represent those of the US government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene. 2007;26:6777–94.

    Article  CAS  PubMed  Google Scholar 

  2. Rothenberg EV. Negotiation of the T lineage fate decision by transcription-factor interplay and microenvironmental signals. Immunity. 2007;26:690–702.

    Article  CAS  PubMed  Google Scholar 

  3. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102:9194–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rossant J. Stem cells: the magic brew. Nature. 2007;448:260–2.

    Article  CAS  PubMed  Google Scholar 

  5. Davidson EH, McClay DR, Hood L. Regulatory gene networks and the properties of the developmental process. Proc Natl Acad Sci U S A. 2003;100:1475

    Google Scholar 

  6. Kee Y, D’Andrea AD. Molecular pathogenesis and clinical management of Fanconi anemia. J Clin Invest. 2012;122(11):3799–806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tategu M, Arauchi T, Tanaka R, et al. Systems biology-based identification of crosstalk between E2F transcription factors and the Fanconi anemia pathway. Gene Regul Syst Bio. 2007;1:1–8.

    PubMed Central  PubMed  Google Scholar 

  8. Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse hematopoietic stem cell function. Nature. 2012;489:571–5.

    Article  CAS  PubMed  Google Scholar 

  9. Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anemia. Nat Genet. 1999;21:169–75.

    Article  CAS  PubMed  Google Scholar 

  10. Narla A, Vlachos A, Nathan DG. Diamond Blackfan anemia treatment: past, present, and future. Semin Hematol. 2011;48(2):117–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ball S. Diamond Blackfan anemia. Hematology Am Soc Hematol Educ Program. 2011;2011:487.

    Article  PubMed  Google Scholar 

  12. Sankaran VG, Ghazvinian R, Do R, Thiru P, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 2012;122:2439–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Du HY, Mason PJ, Bessler M, Wilson DB. TINF2 mutations in children with severe aplastic anemia. Pediatr Blood Cancer. 2009;52:687.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Yamaguchi H, Baerlocher GM, Lansdorp PM, Chanock SJ, Nunez O, Sloand E, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102:916–8.

    Article  CAS  PubMed  Google Scholar 

  15. Alter BP, Young NS. The bone marrow failure syndromes. In: Nathan DG, Orkin HS, editors. Hematology of infancy and childhood, vol. 1. Philadelphia: Saunders; 1998. pp. 237–335.

    Google Scholar 

  16. Kirwan M, Dokal I. Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta. 2009;1792:371–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature. 2010;464:292–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hood L, Qiang T. Systems approaches to biology and disease enable translational systems medicine. Genomics Proteomics Bioinform. 2012;10(4):10181–5.

    Article  Google Scholar 

  19. Leroy H, James RH, Michael EP, Biaoyang L. Systems biology and new technologies enable predictive and preventative medicine. Science. 2004;306:640–3.

    Article  Google Scholar 

  20. Diamond SL. Systems biology to predict blood function. J Thromb Haemost. 2009;7:177–80.

    Article  CAS  PubMed  Google Scholar 

  21. Flamm MH, Colace TV, Chatterjee MS, Jing H, et al. Multiscale prediction of patient-specific platelet function under flow. Blood. 2012;120:190–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Matthew HF, Thomas VC, et al. Multiscale prediction of patient-specific platelet function under flow. Blood. 2012;120:190–8.

    Article  Google Scholar 

  23. Giuseppe P, Bernhard ØP, Olafur ES, et al. Systems biology of stored blood cells: can it help to extend the expiration date? J Proteomics. 2012;76:163–7.

    Article  Google Scholar 

  24. Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet. 2005;37:435–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lei H, Karniadakis GE. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys J. 2012;102(2):185–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sankaran VG, Menne TF, Xu J, Akie TE, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–42.

    Article  CAS  PubMed  Google Scholar 

  27. Stuart HO, Leonard IZ. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631–44.

    Article  Google Scholar 

  28. Vijay GS, Stuart HO. Genome-wide association studies of hematologic phenotypes: a window into human hematopoiesis. Curr Opin Genet Dev. 2013;23:1–6.

    Article  Google Scholar 

  29. Joseph L, Albert-Laszlo B. Systems biology and the future of medicine, Wiley Interdiscip. Rev Syst Biol Med. 2011;3(6):619–27.

    Google Scholar 

  30. Carlson B. Biotechnol Healthc. Spring. 2010;7(1):12–7.

    Google Scholar 

  31. Rothenberg EV, Zhang J, Li L. Multilayered specification of the T-cell lineage fate. Immunol Rev. 2010;238:150–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Georgescua C, Longabaughb WJR, Scripture-Adams DD, David-Fung ES, et al. A gene regulatory network armature for T lymphocyte specification. Proc Natl Acad Sci U S A. 2008;105:20100–105.

    Article  Google Scholar 

  33. Hood L. Deciphering complexity: a personal view of systems biology and the coming of “Big” science. Genet Eng Biotechnol News. 2011;31:131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Qasba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qasba, P. (2014). A Systems Approach to Blood Disorders. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_19

Download citation

Publish with us

Policies and ethics